
Side-Channel A�acks on BLISS La�ice-Based Signatures
Exploiting Branch Tracing Against strongSwan and Electromagnetic Emanations in Microcontrollers

Thomas Espitau
UPMC
France

thomas.espitau@lip6.fr

Pierre-Alain Fouque
Université de Rennes I

France
pierre-alain.fouque@univ-rennes1.fr

Benoît Gérard
DGA.MI
France

benoit.gerard@irisa.fr

Mehdi Tibouchi
NTT Corporation

Japan
tibouchi.mehdi@lab.ntt.co.jp

ABSTRACT
In this paper, we investigate the security of the BLISS lattice-based
signature scheme, one of the most promising candidates for post-
quantum-secure signatures, against side-channel attacks. Several
works have been devoted to its e�cient implementation on various
platforms, from desktop CPUs to microcontrollers and FPGAs, and
more recent papers have also considered its security against certain
types of physical attacks, notably fault injection and cache attacks.
We turn to more traditional side-channel analysis, and describe
several attacks that can yield a full key recovery.

We �rst identify a serious source of leakage in the rejection
sampling algorithm used during signature generation. Existing
implementations of that rejection sampling step, which is essential
for security, actually leak the “relative norm” of the secret key. We
show how an extension of an algorithm due to Howgrave-Graham
and Szydlo can be used to recover the key from that relative norm,
at least when the absolute norm is easy to factor (which happens for
a signi�cant fraction of secret keys). We describe how this leakage
can be exploited in practice both on an embedded device (an 8-bit
AVR microcontroller) using electromagnetic analysis (EMA), and a
desktop computer (recent Intel CPU running Linux) using branch
tracing. The latter attack has been mounted against the open source
VPN software strongSwan.

We also show that other parts of the BLISS signing algorithm
can leak secrets not just for a subset of secret keys, but for 100%
of them. The BLISS Gaussian sampling algorithm in strongSwan
is intrinsically variable time. This would be hard to exploit using
a noisy source of leakage like EMA, but branch tracing allows to
recover the entire randomness and hence the key: we show that a
single execution of the strongSwan signature algorithm is actually
su�cient for full key recovery. We also describe a more traditional
side-channel attack on the sparse polynomial multiplications car-
ried out in BLISS: classically, multiplications can be attacked using
DPA; however, our target 8-bit AVR target implementation uses re-
peated shifted additions instead. Surprisingly, we manage to obtain
a full key recovery in that setting using integer linear programming
from a single EMA trace.

KEYWORDS
side-channel analysis, digital signatures, postquantum cryptogra-
phy, lattices, BLISS, EMA, branch tracing, number theory

1 INTRODUCTION
As possibly the most promising candidate to replace classical RSA
and ECC-based cryptography in the postquantum setting, lattice-
based cryptography has been the subject of increasing interest in
recent years from an implementation standpoint, including on con-
strained and embedded devices. In particular, in the last �ve years
or so, numerous papers have been devoted to the implementation of
lattice-based signatures schemes on various such platforms, such as
FPGA and microcontrollers [11, 24, 29, 30, 41, 42]. Concomitantly,
industry-baked open-source librairies implementing lattice-based
schemes have been developed such as Microsoft’s Lattice Cryptog-
raphy Library [37], Google Chrome Canary’s TLS 1.2 [7] or even
OpenSSL 1.0.2g [43], implementing Peikert’s R-LWE key exchange.
This has provided a better understanding of how practical these
schemes are at concrete security levels.

More recently, researchers have started investigating the secu-
rity of these implementations against physical attacks. In particular,
Bruinderink et al. [8] have demonstrated a cache attack against
BLISS at CHES 2016, and two papers by Bindel et al. [5] and Es-
pitau et al. in [19] at FDTC 2016 and SAC 2016 have presented
fault attacks against BLISS and several other lattice-based signa-
ture schemes. Those attacks mainly rely on the idea that lattice
signatures contain some “noise”, and learning partial information
about that noise (either through cache side-channels or because
fault injection allows to �x some of it to a known value) makes it
possible to reduce the dimension of the underlying lattice problems,
and hence the security of the schemes, often allowing to recover
the secret key.

Lattice-based signatures and BLISS. In the early days of lattice-
based cryptography, several signature schemes with heuristic secu-
rity were proposed, most notably GGH [22] and NTRUSign [27],
but despite several attempts to patch them, they turned out to be
insecure: it was found that the distribution of generated signatures
leaks statistical information about the secret key, which can be
exploited to break these schemes and their variants [20, 21, 38]. The
main approach to obtain e�cient, provably secure lattice-based
signatures in the random oracle model is the “Fiat–Shamir with
aborts” paradigm introduced by Lyubashevsky [34]. It is an exten-
sion of the usual Fiat–Shamir transformation which uses rejection
sampling to make sure that generated signatures have a distribution
independent of the secret key, and avoid the statistical pitfalls of

1

schemes like NTRUSign. More precisely, the underlying identi�ca-
tion protocol achieves its honest-veri�er zero-knowledge property
by aborting some of the time, and signatures are produced by re-
running that protocol with random challenges until it succeeds.

Several instantiations of this paradigm have been proposed [4,
24, 28, 35], targeting various output distributions for signatures,
but the most popular among them is certainly the BLISS signature
scheme proposed by Ducas et al. [13, 14]. It is possibly the most ef-
�cient lattice-based signature scheme so far, boasting performance
comparable to common implementations of RSA and ECC-based
signatures, such as the one in OpenSSL. Signature and public-key
size are a few times larger than RSA (and about one order of magni-
tude bigger than ECC); signature generation is comparable to ECC
and beats RSA by an order of magnitude; and signature veri�cation
is similar to RSA and faster than ECC by an order of magnitude.

This e�ciency is achieved in particular through the use of Gauss-
ian noise, and a target distribution for signature that has a bimodal
Gaussian shape. This makes the rejection sampling step for BLISS
somewhat tricky to implement, particularly on platforms where
evaluating transcendental functions to a high precision is impracti-
cal. However, the authors of [14] proposed an e�cient technique to
carry out this rejection sampling based on iterated Bernoulli trials.
This technique is used, in particular, in the embedded implementa-
tions of BLISS described in [29, 42].

Our contributions. Our goal is to look at the security of BLISS
against side-channel analysis. Most of the attacks we describe apply
in particular to the original proof-of-concept implementation of
Ducas et al. [15], but we speci�cally target two implementations
of a less academic nature: the 8-bit AVR microcontroller imple-
mentation of Pöppelmann et al. [42], as well as the production-
grade implementation included in the open source VPN software
strongSwan [47].

The �rst source of side-channel leakage that we consider is
the clever algorithm proposed in the original BLISS paper [14] to
perform the rejection sampling, which is intervened in a crucial
way in those embedded implementations. To achieve the correct
output distribution, the signature generation algorithm has to be
restarted with probability:

1
,*
,M exp

� kSck

2

2� 2

!
cosh

 hz, Sci
� 2

!+
-,

where (z, c) is the signature generated so far, S the secret key, � the
Gaussian standard deviation andM a scaling factor ensuring that
this probability is always at most 1.

It turns out that the clever algorithm for rejection sampling,
based on iterated Bernoulli trials, traverses the bits of the two
values hz, Sci and K � kSck2 (where K is de�ned such that M =
exp

⇣
K/(2� 2)

⌘
) in much the same way as a square-and-multiply

algorithm traverses the bits of its exponent: one can basically read
those bits on a power or electromagnetic trace! This makes it possi-
ble to mount an SPA/SEMA attack on the rejection sampling using
either of these values. Similarly, on a desktop platform using a
recent Intel CPU, one can similarly read out that sequence of bits
from the list of branching instructions executed within the corre-
sponding function, which is recorded in the CPU branch trace store.
On Linux, this is accessible using perf_events, which are often

available to all userland processes with the same user ID as the
program running the BLISS computation (in our case, strongSwan).

The attack using the scalar product is conceptually quite simple:
given the value hz, Sci for many known signatures (z, c), one can
recover the secret key S using basic linear algebra. However, in real
BLISS signatures, the component z is not output in full, but in a
shorter, compressed form which loses part of the information. This
makes the attack inapplicable in practice.

On the other hand, in real BLISS implementations, one is actually
able to retrieve the value kSck2 using SPA/SEMA, and collecting
su�ciently many such values allows us to compute the relative
norms s1 · s̄1 and s2 · s̄2 of the two cyclotomic integers s1, s2 form-
ing the secret key S. Recovering the secret key from those relative
norms is a problem analogous to the one addressed in a 2004 paper
of Howgrave-Graham and Szydlo [31], except for the fact that the
cyclotomic �eld Q(�m) of interest in our case has a conductorm
equal to a power of two, instead of an odd prime as in the original
paper. We are able to extend the Howgrave-Graham–Szydlo algo-
rithm to this power-of-two conductor case, and use it to complete
the key recovery attack.

There is a technical hurdle to overcome, however. Like the origi-
nal Howgrave-Graham–Szydlo algorithm, our method is only ef-
�cient when one knows the factorization of the absolute norm of
cyclotomic integer of interest. But for BLISS parameters, this ab-
solute norm is between 1000 and 2000-bit long, so it is not easy
to factor academically in general. However, for a signi�cant frac-
tion of all keys, the absolute norm is prime, or at least the product
of a large prime with very small prime powers that can be fac-
tored out using trial division; and for those “weak” keys (forming
over 3% of all keys for typical BLISS parameters) our generalized
Howgrave-Graham–Szydlo algorithm runs in full polynomial time.

In addition, we also consider two other sources of side-channel
leakage: the Gaussian sampling algorithm used to generate the
random masks used in BLISS signatures on the one hand, and the
polynomial multiplication s1 · c between the secret key and the
public variable hash value c on the other hand.

Regarding the rejection sampling, the original BLISS paper pro-
poses several techniques to carry it out, and the strongSwan imple-
mentation chooses one which intrinsically runs in variable time.
Like the rejection sampling, it is based on repeated sampling of
Bernoulli trials. It consists of an a priori unbounded number of
iterations, with a complex collection of functions calling one an-
other hundreds of times, and it is carried out to generate each of the
512 coe�cients of the random Gaussian polynomial y1. The power
or EM trace of the execution of this algorithm on an embedded
device would likely look gibberish; however, branch tracing allows
to take full advantage of it: since branch tracing records the full list
of branching instructions carried out during this computation, it
can be used to reconstruct y1 entirely. That polynomial, together
with the signature elements c and z1 = y+ (�1)b s1 · c, is enough to
recover the entire secret key (up to sign, which is enough): branch
tracing of a single execution of the signature generation algorithm
is su�cient for a complete break of all keys!

As for the computation of the product s1 · c, it is relatively clas-
sical that such a multiplication, when implemented in a naive way,
can be attacked using di�erential power analysis (DPA), correlation

2

Figure 1: Description of the BLISS signature algorithm. The
randomoracleH takes its values in the set of polynomials in
R with 0/1 coe�cients and Hamming weight exactly �, for
some small constant �.

1: function S���(µ, pk = a1, sk = S)
2: y1 Dn

Z,� , y2 Dn
Z,�

3: u = � · a1 · y1 + y2 mod 2q
4: c H (bued mod p, µ)
5: choose a random bit b
6: z1 y1 + (�1)b s1c
7: z2 y2 + (�1)b s2c
8: rejection sampling: restart to step 2 except with probability

1/
⇣
M exp(�kSck2/(2� 2)) cosh(hz, Sci/� 2)

⌘

9: z†2 (bued � bu � z2 ed) mod p
10: return (z1, z†2, c)
11: end function

power analysis (CPA) and related techniques. The implementation
of the multiplication in our 8-bit AVR target [42], however, takes
advantage of the special form of c (which is a very sparse polyno-
mial with coe�cients in {0, 1}). The product is simply computed as
a sum of signed shifts of the secret key. As a result, a somewhat dif-
ferent attack approach is required. Surprisingly, using integer linear
programming techniques, we describe a method for recovering the
secret key using a single power or EM trace of this multiplication
algorithm. This not only breaks the unprotected implementation
described in [42], but also defeats various blinding countermea-
sures that could be designed to protect it, such as the one recently
proposed by Saarinen [45].

Finally, we conclude the paper by discussing limitations of our
attacks and possible countermeasures. One important outcome of
these attacks is that they illustrate a major problem cryptography
engineers are facing namely the di�culty to quantify the threat
due to a leakage. A security aware programmer would have surely
noticed that the norm was easily readable due to its non-constant
execution time. But he would also have thought it was not an
exploitable leakage. Our opinion is that as far as side-channels are
concerned, simpler is often better. In that spirit, we consider the
possible merits of using a lattice-based signature scheme with a
simpler mathematical structure, such as the “ancestor” of BLISS
due to Güneysu, Lyubashevsky and Pöppelmann [24]. Our analysis
suggests that such a scheme may be preferable to BLISS when
physical attacks are a concern.

2 DESCRIPTION OF THE BLISS SCHEME
Notation. For any integer q, the ring Zq is represented by the

integers in [�q/2,q/2) \ Z. Vectors are considered as column vec-
tors and will be written in bold lower case letters and matrices with
upper case letters. By default, we will use the L2 Euclidean norm,
kvk2 = (

P
i �

2
i)

1/2 and L1-norm as kvk1 = maxi |�i |.
Description of BLISS. The BLISS signature scheme [14] is pos-

sibly the most e�cient lattice-based signature scheme so far. It
has been implemented in both software [15] and hardware [41],

Figure 2: Sampling algorithms for the distributions
Bexp(�x/f) and B1/ cosh(x/f) . The values ci = 2i/f are pre-
computed, and the xi ’s are the bits in the binary expansion
of x =

P`�1
i=0 2

ixi .

1: function S�����B���E��(x 2 [0, 2`) \ Z)
2: for i = 0 to ` � 1 do
3: if xi = 1 then
4: Sample a Bci
5: if a = 0 then return 0
6: end if
7: end for
8: return 1
9: end function

1: function S�����B���C���(x)
2: Sample a Bexp(�x /f)
3: if a = 1 then return 1
4: Sample b B1/2
5: if b = 1 then restart
6: Sample c Bexp(�x /f)
7: if c = 1 then restart
8: return 0
9: end function

and boasts performance numbers comparable to classical factor-
ing and discrete-logarithm based schemes. BLISS can be seen as
a ring-based optimization of the earlier lattice-based scheme of
Lyubashevsky [35], sharing the same “Fiat–Shamir with aborts”
structure [34]. One can give a simpli�ed description of the scheme
as follows: the public key is an NTRU-like ratio of the form aq =
s2/s1 mod q, where the signing key polynomials
s1, s2 2 R = Z[X]/(Xn + 1) are small and sparse. To sign a message
µ, one �rst generates commitment values y1, y2 2 R with normally
distributed coe�cients, and then computes a hash c of the message
µ together with u = �aqy1 + y2 mod q. The signature is then the
triple (c, z1, z2), with zi = yi + si c, and there is rejection sampling
to ensure that the distribution of zi is independent of the secret key.
Veri�cation is possible because u = �aqz1 + z2 mod q.

The real BLISS scheme, described in Figure 1, includes several
optimizations on top of the above description. In particular, to im-
prove the repetition rate, it targets a bimodal Gaussian distribution
for the zi ’s, so there is a random sign �ip in their de�nition. In
addition, to reduce key size, the signature element z2 is actually
transmitted in compressed form z†2 , and accordingly the hash input
includes only a compressed version of u. See also Appendix B for a
description of key generation and veri�cation.

Implementation of the BLISS rejection sampling. It is essential for
the security of the scheme that the distribution of signatures is
essentially statistically independent of the secret signing key. This
is achieved using the rejection sampling step 8 of algorithm S���,
as described in Figure 1.

To implement this rejection sampling in practice, one needs to
be able to e�ciently sample from Bernoulli distributions of the
form Bexp(�x/f) and B1/ cosh(x/f) for some �xed constant f and

3

variable integers x (where Bp denotes the Bernoulli distribution of
parameter p, which outputs 1 with probability p and 0 otherwise).

This can in principle be done by computing the rejection prob-
ability every time with su�cient precision and comparing it to
uniformly sampled randomness in a suitable interval, but such an
approach is quite costly, especially on constrained devices, as it
relies on the evaluation of transcendental functions to arbitrary
precision. Therefore, BLISS relies on an alternate approach, which
is described in [14, §6] and can be implemented based on sampling
Bernoulli distributions Bci for a few precomputed constants ci .

The idea is as follows. To sample from Bexp(�x/f) , one can
consider the binary expansion

P
xi ·2i of x , and let ci = exp(�2i/f).

Then one has exp(�x/f) = Q
xi=1 ci . As a result, sampling from

Bexp(�x/f) can be done by sampling from each of theBci ; if all the
resulting samples are 1, return 1, and 0 otherwise. This can even be
done in a lazy manner, as described in algorithm S�����B���E��
in Figure 2.

In addition, one can show that sampling from B1/ cosh(x/f) can
be done by repeated sampling from Bexp(�x/f) and B1/2, as de-
scribed in algorithm S�����B���C��� in Figure 2 (the correctness
of that method is proved as [14, Lemma 6.3]). The algorithm has an
a priori unbounded number of iterations, but the expected number
of calls to Bexp(�x/f) is less than 3.

Concretely, the BLISS rejection sampling is thus implemented
as follows. The denominator f in S�����B���E�� and S������
B���C��� is set to 2� 2, and the scaling factorM for the rejection
sampling is taken of the form exp(K/f) for some integer K . Then,
step 8 of S��� in Figure 1 actually consists of the instructions de-
scribed in Figure 3.

3 ATTACKS ON THE REJECTION SAMPLING
As discussed in §2, the original BLISS paper describes an e�cient
technique to carry out the rejection sampling during signature gen-
eration [14, §6], based on iterated Bernoulli trials. This technique
is used in particular in embedded implementations such as [42].

From the description of algorithm S�����B���E�� in Figure 2,
one can easily infer that its input x will be leaked in full on a power
or EMA trace whenever the entire for loop contained in it executes
in full (which is always the case when the algorithm returns 1).
This leakage is validated in the practical experiments of §3.3.

Now the signature generation algorithm S��� of BLISS only
passes the rejection sampling step if the calls to both S�����B����
E�� and S�����B���C��� return 1. This means that a side-channel
attacker can recover the entire inputs to both of these functions,
which are K � kSck2 and 2 · ���hz, Sci��� respectively. Thus, one can
obtain the squared norm kSck2 on the one hand, and the scalar

1: x K � kSck2
2: Sample a S�����B���E��(x)
3: if a = 0 then restart the signing algorithm
4: x 2 · hz, Sci
5: if x < 0 then x �x
6: Sample a S�����B���C���(x)
7: if a = 0 then restart the signing algorithm

Figure 3: BLISS rejection sampling implemented in terms of
Bernoulli trials.

product hz, Sci up to sign on the other hand. However, since the
computation of the absolute value also leaks the sign of that value
on a power/EMA trace due to the conditional branch, one actually
obtains the full value hz, Sci in practice. In this section, we describe
how these leaked values can be exploited for key recovery.

3.1 Exploiting the scalar product leakage
We �rst describe how to exploit the leakage of the scalar product
values:

hz, Sci = hz1, s1ci + hz2, s2ci,
assuming that the adversary can somehow recover the whole un-
compressed signature (c, z1, z2). In that case, the attack is essentially
straightforward: indeed, each such leaked value is the evaluation
of a linear form with known coe�cients on the vector S = (s1, s2)
seen as an element of Q2n . And it is clear that those linear forms
on Q2n generate the entire dual vector space of Q2n as (c, z1, z2)
vary.

This means that if we collect the leakage values associated with
su�ciently many signatures (slightly more than 2n is enough in
practice), we obtain a full-rank linear system in the coe�cients of
S, and hence we can recover the entire secret key by simply solving
that linear system.

This attack does not apply to real implementations of BLISS,
however, due to signature compression: real BLISS signatures do
not contain the entire element z2 but only a compressed version
z†2 that depends only on the higher-order bits of the former. As a
result, the previous approach fails to apply. We cannot even use it
to reduce the dimension of the underlying lattice problem, because
a leaked scalar product reveals less information about the secret
key than the number of unknown bits of z2 in view of the signature.

Thus, a more sophisticated approach is necessary, based on the
leaked Euclidean norms kSck2.

3.2 Exploiting the norm leakage
Let’s suppose we can have access by SPA to the bits of kSck2 in
the �nal computation of the rejection sampling. Recalling that
Sc = (s1c, s2c)T , we have kSck2 = hs1c, s1ci + hs2c, s2ci and thus
this norm can be seen as CT · �T · � ·C , where C = (c, c)T and

� =
266664
S1 0
0 S2

377775 ,
for c being the vector encoding of the polynomial c, and S1 (resp.
S2) being the skew-circulant matrix encoding the polynomial s1
(resp. s2). Let X be the matrix �T · �. Then, recovering the value
kSck2 yields an equation of the shape:

cT · X · c = kSck2. (1)

This equation can be viewed as a row of a linear system whose
unknowns are the coe�cients of the secret-dependent matrix X .
Since X is a block matrix of shape Diag

⇣
X (1) ,X (2)

⌘
where X (i) are

circulant matrices of �rst line✓
x
(i)
1 ,x

(i)
2 ,x

(i)
3 , · · · ,x (i)m/2+1, 0,�x

(i)
m/2+1, · · · ,�x

(i)
3 ,�x (i)2

◆

as product of two conjugate skew-circulant matrices. Thus, only
2 ⇥m/2 = m distinct unknowns are actually present in X . As a
consequence we only need m linearly independent equations to

4

Table 1: Estimation of the absolute norms of BLISS secret
keys for the security parameters of [14] (experimental aver-
ages over 2000 keys per set).

Bit size of N (f)

n (�1, �2) theoretical exp. avg.

BLISS-0 256 (0.55, 0.15) 1178 954
BLISS-I 512 (0.3, 0) 2115 1647
BLISS-II 512 (0.3, 0) 2115 1647
BLISS-III 512 (0.42, 0.03) 2332 1866
BLISS-IV 512 (0.45, 0.06) 2422 1957

fully recover the matrix X . Once recovered, we therefore get access
to the submatrices ST1 · S1 and ST2 · S2. By de�nition, this matrix
corresponds to the encoding of the polynomial s1 · s̄1 and s2 · s̄2,
that is the relative norm of the secrets s1 and s2 in the totally real
sub�eld. Using techniques from algebraic number theory we can
retrieve both parts of the secret up to multiplication by a root of
unity. Precisely, this is performed using our generalization of the
Howgrave-Graham–Szydlo algorithm [31], presented in Appen-
dix A. The recovered key in then equivalent to the original: indeed,
given the recovered values s1 · u1, and s2 · u2 (u1, u2 roots of unity),
we can use our knowledge of s2/s1 mod q (which is the public key)
to compute the ratio u2/u1 and thus s1 · u2. Hence we recover the
two components of the secret key up to the same root of unity,
and this is equivalent to the original key as both have the same
Euclidean norms. The attack is described in Figure 4.

The mostly costly part of the attack is the generalized Howgrave-
Graham–Szydlo algorithm from Appendix A, and in particular the
step of norm factorization over the integers. In order to estimate
the cost of this factorization step, one can bound the algebraic norm
of the secret element. A classical computation on resultants (see
Appendix A.5 for a detailed argument) entails that this norm is
bounded (somewhat crudely) as:

log |N (s) |  n

2

✓
log(n

q
�21 + 4�

2
2) + 1

◆
.

Table 1 compiles the theoretical bound and the average practical
results for the various proposed security parameters.

We can see that these integers are typically too large to be fac-
tored in practice. Since the success of the attack depends on the
ability to factor the norm, we are only able to attack a fraction
of the whole space of private keys, for which the factorization is
easy. A particular class of them is the set of keys whose norm is a
B-semi-smooth integer, that is a composite number p · b,where p is
prime and b is B-smooth for an non-negative integer B. Practical

1: Collect traces (c(k), kSc(k) k2)k until the matrix C corresponding
of the corresponding system is full-rank.

2: Solve the linear system C · X = (kSc(1) k2, . . . , kSc(k) k2)T .
3: Call Algorithm 14 on s1 · s̄1 and s2 · s̄2 to recover s1 and s2 up to a

root of unity.

Figure 4: Exploiting the norm leakage in BLISS.

estimations of the fraction of keys with semi-smooth norms are
presented in Table 2.

Note that the entire attack is actually known to run in polynomial
time, except, classically, the factorization of the norm. Amusingly,
this means that the attack becomes quantumly fully polynomial:
this is an interesting feature for an attack targeting a postquantum
scheme!

The entire attack was implemented in PARI/GP, including the
generalized Howgrave-Graham–Szydlo algorithm and the Gentry–
Szydlo algorithm. To the best of our knowledge, this was the �rst
full implementation of this algorithm. It allows to tackle the problem
of solving norm equations in dimension up to 5121 Experiments
were conducted with this implementation to obtain the running
time the attack and presented in Table 3, on a single core of a Xeon
E5-2697 2.6 GHz CPU.

3.3 SEMA experiments against microcontroller
Experimental setup. Experiments were conducted on the same

target that the one used for development in [42] that is an XMEGA-
A1 Xplained board with a ATxmega128A1 micro controller, running
at a frequency of approximately 20 MHz. Traces were obtained by
measuring the electromagnetic radiations using a Langer EM H-
Field probe (30MHz-3GHz) and a MITEQ ampli�er (up to 500MHz
with gain 63dB). Acquisition was performed using a Lecroy Wave-
Master 8300A oscilloscope. For the norm recovery we used a sam-
pling frequency of 5 MHz to obtain a good-looking picture but good
results may also be obtained with smaller sampling rates. The more
relevant position for the probe (i.e. the one providing the clearer
patterns) was over the ground capacitance and not over the chip
itself (which is not that surprising since the chip was packaged).

Experimental result. Section 3.2 shows that from a leaked set of
norms kSck2 , we are able to fully recover the secret value S. We
show here how such norm can easily be recovered in the imple-
mentation proposed in [42] (we recall this implementation was not
supposed to be secure since optimized for performance).

We can see in Figure 5 an extract of the code performing the
rejection sampling procedure. It corresponds to the probability
1/

⇣
M exp(�kSck2/(2� 2)

⌘
. The main point to notice here is the and

1In their original paper, Howgrave-Graham and Szydlo were limited to smaller di-
mension (up to 100) and did not implement all the possible cases occurring in the
algorithm.

uint8_t samplerBerExp (uint32_t x){
uint16_t bit =0;
while (x >0) {

if ((x&1) && ! samplerBer (bit *16))
return 0;

x >>= 1;
bit ++;

}
return 1;

}

uint8_t samplerBerExpM (int32_t x){
return samplerBerExp (paramM -x);

}

Figure 5: Code snippet of the rejection sampling from BLISS
implementation [42].

5

Table 2: Estimation of the proportion of B-semi-smooth of BLISS secret key for the security parameters of [14]. Empirical
estimators of the given probabilities where constructed by sampling k = 2000 secrets with the corresponding parameters and
test them for B-semi-smoothness.

n B = 2 B = 5 B = 65537 B = 655373 B = 6553733

BLISS-0 256 2% 3% 3.8% 6% 6.5%
BLISS-I/II 512 1% 1.5% 2% 2.8% 3.7%
BLISS-III/IV 512 0.75% 1% 1.75% 2% 2.5%

Table 3: Average running time of the attack for various �eld sizes n. The BLISS parameters correspond to n = 256 and n = 512.

Field size n 32 64 128 256 512

CPU time 0.6 s 13 s 21 min. 17h 22 min. 38 days
Clock cycles ⇡ 230 ⇡ 235 ⇡ 241 ⇡ 247 ⇡ 253

condition in the samplerBerExp function. Indeed, it looks like the
call to samplerBer will only be executed if the least signi�cant bit
of the intermediate variable x is one. Of course, after compiling and
scrutenizing the ASM code it turns out that it is precisely what the
compiler did. This is an obvious SPA leakage source that may be
easily recovered as we show now.

In Figure 6, we plotted the EM radiations corresponding to a
norm kSck2 = 14404. Thus, the Bernoulli exponential sampler is
called using argument 46539 � 14404 = 32135 = 0x7D87 since the
paraM value is 46539 in the (standard) set of parameter used. The
loop on the norm is performed from the least to the most signi�cant
bit thus we expect the serie of bit { 1 , 1 , 1 , 0 , 0 , 0 , 0 , 1 , 1 , 0 , 1 ,
1 , 1 , 1 , 1 } to be visible on the trace in Figure 6 what is obviously
the case.

3.4 Branch tracing attack against strongSwan
Experimental setup. As discussed in the introduction, our other

target is the open source VPN software strongSwan [47], which
includes a production grade implementation of BLISS for use in

-1.5

-1

-0.5

0

0.5

1

1.5

2

150000 200000 250000 300000 350000 400000

1 1 1

0 0 0 0

1 1

0

1 1 1 1 1

Figure 6: Electromagnetic measure of BLISS rejection sam-
pling for norm 14404.

the IKEv2 authentication protocol, as well as for the postquantum-
secure signing of X.509 certi�cates. The architecture of the BLISS
implementation in strongSwan is described in [46].

We attack the latest stable version of strongSwan as of this
writing (5.5.2) when compiled and run on a Linux x86–64 desktop
platform. We ran our experiments on an Intel Core i7-3770 CPU
from the Ivy Bridge family, but they should apply to all Intel CPUs
from the past ten years at least, with very recent architectures like
Sky Lake providing even greater control. We used Linux kernel
version 4.8.0, but the relevant interfaces have been available since
late iterations of the 2.6.x branch.

Using the CPU branch trace store. Our attack vector is branch
tracing. Modern CPUs like the ones mentioned above provide ex-
tensive, low-overhead instrumentation for performance pro�ling,
debugging and other applications. On Intel CPUs, this includes the
Precise Event-Based Sampling (PEBS) interface, which provides
accurate counters for numerous events related to program execu-
tion (CPU cycles, context switches, page faults, branch misses, etc.),
as well as the Branch Trace Store (BTS), which records various
informations (including origin and destination addresses) of all
branching instructions actually taken during the execution of a
process or process family in a special area of memory. When PEBS
performance counters over�ow, or when the BTS memory area
�lls up, the CPU generates interrupts that can be captured by the
operating system to record complete information separately.

Access to those hardware functionalities is normally privileged,
but can be exposed to userland processes by the operation system.
This is in particular the case under Linux through the perf_events
interface and the perf command. Branch tracing of a process (be-
longing to the same user), in particular, can be carried out using
the following instruction:

perf record -e branches:u -c 1 -d -p hpidi
which produces a large binary �le (perf.data) containing infor-
mations about all branching instructions executed in the process
with PID hpidi between user space addresses, in the correct order
(even if the CPU may execute out-of-order or mispredict branches,

6

the data in perf.data corresponds to the logical execution, so it is
in the right order and does not include branch misses). The binary
�le can then be analyzed using the perf report and perf script
commands. Speci�cally, perf script -F ip,addr prints a list of
lines of the form:

7fd0a2a48884 => 7fd0a2a484a8

indicating the source and destination address of each branching
instruction.

The use of perf_events by non-privileged users can be re-
stricted, according to the kernel.perf_event_paranoid sysctl set-
ting: if that parameter is set to 2 (most paranoid), the perf record
command above will fail without root privileges, which makes our
attack rather meaningless. However, at any level below that (1, 0
or �1), the command succeeds, and so does our attack. And the
parameter is often not set to the most paranoid level by default.
Moreover, there can actually be security reasons not to disallow user
space perf_events by ordinary users: for example, the use of PEBS
counters has been recommended as a possible way of detecting
cache attacks [23] and other attacks causing large numbers of cache
misses (such as rowhammer [32]): see for example the discussion
in [26]. Since the detection requires high-frequency polling of per-
formance counters, applying it system-wide could cause signi�cant
slowdowns and lead to false positives, so it should ideally be run
by the user himself on the sensitive process he wants to monitor
against attacks (strongSwan would be a natural candidate!).

Recovering the BLISS norm in strongSwan with branch tracing.
The strongSwan implementation of BLISS signature generation
uses a direct implementation of the Bernoulli-based algorithm for
rejection sampling described in Figure 2. In particular, the func-
tion that implements S�����B���E��, called bernoulli_exp in
strongSwan, iterates over each bit of the input value x , and skips to
the next iteration whenever the bit is zero. More precisely, branches
are taken in bernoulli_exp:

(1) to enter into the function;
(2) to iterate over the bits of the input x ;
(3) each time the corresponding bit is 0;
(4) to return from the function.

If we can �nd the addresses corresponding to all of these branch-
ing instructions, the information provided by perf script will
immediately reveal every bit of x , which will let us reconstruct x
and hence mount the attack described in §3.2.

The strongSwan software (and more generally any program
linked against the libstrongswan library) accesses the BLISS-related
functions from the libstrongswan-bliss.so object, which is dy-
namically loaded using dlopen(3). So to �nd the addresses of rele-
vant branching instructions in the memory space of the attacked
process, it su�ces to �nd the o�sets of those instructions within
libstrongswan-bliss.so, as well as the address at which that
library is mapped in the memory space of the process once it is
loaded. The latter can be done by parsing the line corresponding
to the libstrongswan-bliss.so executable segment in the �le
/dev/hpidi/maps.

As for the former, it can be done using a disassembler, such
as the disassemble/m command in gdb, as shown in Figure 7.
We can see from that �gure that, in our compiled version of the

Figure 7: Disassembled code snippet of the bernoulli_exp
method, as output by the gdb disassemble/m command.

Dump of assembler code for function bernoulli_exp :
46 {

0 x000066f0 <+0>: push %r15
...
58 while (x_mask > 0)

0 x00006742 <+82 >: test %r13d ,% r13d
0 x00006745 <+85 >: mov %rdx ,% rbp
0 x00006748 <+88 >: je 0 x67c8 <bernoulli_exp +216 >
0 x000067c3 <+211 >: shr %r13d
0 x000067c6 <+214 >: jne 0 x674a <bernoulli_exp +90 >

59 {
60 if (x & x_mask)

0 x0000674a <+90 >: test %r13d ,% r14d
0 x0000674d <+93 >: je 0 x67c0 <bernoulli_exp +208 >

61 {
...
78 }
...
81 }
...
85 }
...

0 x000067ad <+189 >: retq

Figure 8: Example output from the run_exploit_rejection
shell script from Figure 18.

Running target � basic_sign � as PID 13261 . Launching perf record.
perf record complete. Parsing perf.data.
Recovered x : 29526
Correct |Sc |^2 : 17013
Should sum to : 46539
Success !

libstrongswan-bliss.so object, the four o�sets we are interested
in are respectively 0x66f0 (entry point), 0x67c6 (while loop iter-
ation), 0x674d (conditional branch on the bits of x) and 0x67ad
(return). The same method allows us to �nd the address in the
BLISS signing function sign_bliss at which the bernoulli_exp
method is called (it can be either 0x2de3 or 0x2f51). Then, it suf-
�ces to �nd the corresponding branching event in the output of
perf script and follow from there the branching instructions
carried out inside bernoulli_exp to recover x and hence kSck2.

The entire attack has been mounted against a short program
linked against libstrongswan-bliss.so that generates a BLISS
key, computes a BLISS signature with it and veri�es it. A short
shell script runs that program, launches perf report on it, and
calls a perl script to parse the output of perf script afterwards.
An example output of the shell script implementing the attack is
shown in Figure 8. We are able to recover the value kSck2 correctly
all the time. The source code of the entire attack is provided in the
�gures of Appendix C.

Features and limitations of the attack. The adversarial use of
perf_events-based branch tracing does not seem to have received
much consideration in the literature, but it is quite similar to the
branch prediction attacks of Acıiçmez et al. [1–3]. The branch trac-
ing side-channel is more robust, however: on most CPUs, branch
prediction is randomized or at least non-deterministic, so that the
information one can get from branch mispredictions and similar
events is noisy. Our attack, on the other hand, produces a complete
and faithful execution trace, and thus succeeds all the time.

It does shares some of the limitations of branch prediction attacks,
however. In particular, the attackmodel is quite strong, as it requires
the ability to run another process on the same platform, usually

7

with the same UID as the target process. This is not to say that it is
meaningless, though, as modern Linux systems, through security
measures like ptrace protection, will not allow a process to e.g.
read from the memory space of another process from the same
user: userland interprocess spying is usually regarded as a serious
security issue. Similarly, secret keys stored on disk are usually
encrypted and passphrase-protected, so one cannot assume that a
process can learn all of a user’s secrets just by acquiring his UID.

Another limitation of the attack, which is again shared with
branch prediction attacks and many other attacks in the spy-process
paradigm [3, §2.3], is that is has a noticeable e�ect on overall system
performance, and hence is unlikely to remain undetected when
using the target software interactively. The main performance hit
in our attack is due to the perf record command writing to disk
an exhaustive record of all branching events in the execution of the
target: this amounts to hundreds of megabytes of data, of which we
use only a few dozen bytes. Modifying perf to only write the events
we need would reduce the overhead of the attack by a considerable
extent. Moreover, Sky Lake and newer Intel CPUs allow this �ltering
to be carried out directly on-chip using hardware address �lters,
reducing the attack overhead to practically zero.

4 ATTACK ON THE GAUSSIAN SAMPLING
The second source of side-channel leakage that we consider is the
Gaussian sampling algorithm used to generate the random masks
y1 and y2 during signature generation. This algorithm samples
from a �xed, centered discrete Gaussian distribution. Numerous
techniques have been proposed to carry out that operation. One
standard approach [17] involves the use of a cumulative distribution
table, as suggested by Peikert [40], combined with the Knuth–Yao
algorithm. This is mentioned in the original BLISS paper [14, §6], but
the authors note that this requires storing large tables in memory.

Instead, they propose an alternate iterative approach based on
the repeated sampling of Bernoulli and uniform distributions. Their
algorithm S�����G������� is described in Figure 9, and relies on
the Bernoulli sampling function S�����B���E�� as well a simple
function S�����P��G������� that samples from the positive part
of the discrete Gaussian distribution that picks the integer i with
probability proportional to 2�i2 .

This approach is the one implemented in strongSwan. It has
the advantage of requiring only a small amount of storage space
(the tables containing the constants used in S�����B���E��). A
drawback, however, is that it runs intrinsically in variable time:
the number of iterations is a priori unknown, and even though
one could choose to bound the number of iterations in S�����P���
G������� by some su�ciently large value, carrying out the entire
loop every time would be very costly. This timing variability is
a source of side-channel leakage. Due to the contrived structure
of the algorithm (which starts over multiple times, etc.), it seems
di�cult to extract a lot of information from that leakage on a noisy
trace, as provided by power or EM analysis techniques, especially
as a given Gaussian sample is used in only one signature generation
(so that DPA/CPA style statistical tools are not applicable).

The branch tracing technique described in §3.4, however, pro-
vides an ideal way of taking advantage of that leakage. Indeed,
a branch trace of the execution of S�����P��G������� directly

reveals the output of that function: it su�ces to count the number
of iterations of the for loop (reverting to 0 when the algorithm
restarts). And we have already seen that a branch trace of S������
B���E�� reveals the input of that function. Therefore, a branch
trace of S�����G������� reveals the value of x (as the output of
S�����P��G�������) as well as the value� (�+2kx), which is equal
to z2 � k2x2 (as the input of S�����B���E��). Since k is actually
a �xed constant for a given parameter set, one obtains z2, as well
as the sign of z from the �nal conditional branch, and hence the
complete output z! We have carried out this attack in the same
setting as in §3.4, and veri�ed that it recovers the samples correctly:
see Figure 20–21 in Appendix C for the corresponding parser.

This means that a branch trace of a BLISS signature generation in
strongSwan leaks the entire value of the random masks y1 and y2.
But the signature itself contains the values c and z1 = y1+ (�1)b s1c.
Hence, whenever c is invertible (which happens with probability
(1� 1/q)n > 95% for each signature), we can recover the secret key
element s1 as c�1 · (z1 � y1). And the secret key element s2 is easily
deduced from s1 using the public key.

In other words, a branch trace of a single BLISS signature gener-
ation in strongSwan will, with > 95% probability, reveal the entire
secret key! And unlike the attack on the rejection sampling, this
works for 100% of secret keys.

The attack is subject to the caveats mentioned at the end of §3.4:
it assumes a relatively powerful attacker and is not very stealthy.
Nevertheless, it shows that this variable-time approach for Gaussian
sampling has signi�cant security implications.

5 ATTACKS ON THE MULTIPLICATION
We now turn to attacks targeting the multiplication between the
signature element c and the secret key (s1, s2). Those attacks will
apply to all secret keys (in contrast with the one from §3.2, which
only recovered a subset of all keys).

If no protection is used, traditional polynomial multiplication can
be attacked using classical DPA-like techniques. If an NTT-based
multiplication is used, we can target n one-to-one products between
a known varying value and a secret. However, since BLISS uses
sparse polynomials with small coe�cients, other algorithms are
sometimes used to compute the product. Speci�cally, the 8-bit AVR
implementation of Pöppelmann et al. [42] that we target2 relies
on repeated shifted additions instead. The polynomial c (which we
recall has exactly� coe�cients equal to 1 and all others equal to 0) is
represented as a vector of � indices corresponding to the ones, and
multiplication by c is an iterated sum over those indices. We show
that this unusual implementation of polynomial multiplication not
only remains vulnerable to side-channel analysis, but can in fact
be broken with a single trace. Thus, our proposed attack can be
applied even when using blinding countermeasures, such as the
ones proposed by Saarinen [45]. Indeed, the blinding randomizes
polynomials before multiplication using shifts and multiplications
by constants, which corresponds to a search space of a�ordable
dimension in the case of BLISS.

In the following, we �rst describe the sparse multiplication
of [42], and then propose an attack on this implementation, both

2This implementation does not claim any particular SCA resistance.

8

Figure 9: Description of the BLISS Gaussian sampling algorithm.

1: function S�����P��G�������()
2: sample b uniformly in {0, 1}
3: if b = 0 then return 0
4: for i = 1 to1 do
5: draw random bits b1 . . . bj for j = 2i � 1
6: if b1 . . . bj�1 , 0 . . . 0 then restart
7: if bj = 0 then return i
8: end for
9: end function

1: function S�����G�������(k)
2: sample x S�����P��G�������()
3: sample � uniformly in {0, . . . , k � 1}
4: z kx + �
5: sample b S�����B���E��

⇣
� (� + 2kx)

⌘

6: if b = 0 then restart
7: if z = 0 then with probability 1/2 restart
8: sample b uniformly in {0, 1}
9: if b = 1 then z �z
10: return z
11: end function

in the unprotected case and when using Saarinen’s blinding coun-
termesure.

5.1 Implementation details
First, let us recall that we target the multiplications of the poly-
nomial c with the two components s1, s2 of the secret key. These
polynomials have the following properties:
• s1 is of degree n with coe�cients in {�2,�1, 0, 1, 2},
• s2 is of degree n with coe�cients in {�3,�1, 1, 3, 5},
• c is of degree n and with � coe�cients 1 and all others equal
to 0.

Figure 10 describes the core of the targeted sparse multiplication.
Before performing this multiplication, the vector c is randomly
generated in such a way that the indices in the vector are not
ordered. Thus, even if one knows the non-zero coe�cients of c (as
part of the signature), we cannot infer the order in which they are
accessed in the j-loop (i.e. we cannot deduce i from q and j).

5.2 Attacking the unprotected multiplication
The attack proceeds in two steps. First, the attacker recovers the
order in which the non-zero indices of c are stored in memory.
Then, based on this information, he recovers the coe�cients of the
second multiplicand.

Recovering the order of indices in c. For the �rst step, one can use
two possible approaches:

for (q = 0 ; q < N ; q++) { /* loop on res coefficients */
res[q] = 0;
for(j = 0 ; j < Kappa ; j++) { /* loop on c coefficients */

int8_t val = 1;
int16_t i = (q - c[j]); /* the corresponding s coefficient

index */
if(i < 0) {

i += N;
val = -val;
}

val *= s[i];
res[q] += val; /* update res coefficient at position q */
}

}

Figure 10: Code snippet of mulSparse function from BLISS
implementation [42].

(1) using SPA information from the if condition on i,
(2) performing a CPA on the computation of q-c[j].
The �rst technique involves exploiting the timing di�erence

induced by the if condition using pattern matching techniques.
There is indeed an exploitable timing di�erence between the pat-
terns corresponding to the conditional code being executed or not.
Finding the positions where the additional code is executed in a
j-loop allows to recover index positions. More precisely, the values
of j for which the if condition evaluates to true correspond to the
cells of array c that contain a value larger than q. This knowledge
directly translates to knowing the order of non-zero indexes in c.

In the second approach, one exploits data-dependent leakage.
For a targeted value c[j], the samples corresponding to the com-
putations of i for the n di�erent values of q are recorded. Then,
one can perform a CPA attack to distinguish the correct value of
c[j] from others since q is known.

Attacking the polynomial multiplication. Now that the attacker
knows the order in which the coe�cients of c are processed, he
can compute the values of i for each inner-loop iteration. This
allows him to target the accumulation operation res[q] += val
since he knows which secret coe�cient of s is contained in val.
Our hypothesis is that he obtains the Hamming weight of val and
res[q] (both before and after addition) as it is generally the case on
micro-controllers. This hypothesis is actually pessimistic, since one
may obtain additional leakage (e.g. Hamming distances) or more
informative ones (e.g. polynomials in the register bits).

Let us �rst look at what an attacker can learn from the leakage of
val. Values in this variable are directly linked to coe�cients in s up
to a (known) sign inversion. Nevertheless, these coe�cients cannot
be directly recovered from the leakages: obtaining the Hamming
weight of a variable taking values in {�2,�1, 0, 1, 2} will potentially
reveal its value if it is zero but only its sign if it is non-zero3. The
parameters of the scheme make the remaining exhaustive search
intractable.

Let us now consider the second leakage source, namely the Ham-
ming weight of res[q]. In that case the problem comes from the
fact that a classical divide-and-conquer strategy cannot be applied.
Exploiting a leakage on res[q] would require the knowledge of its

3For s2 , coe�cients are taken in {�3, �1, 1, 3, 5} thus exploitation is a bit easier but
still it is not enough).

9

Table 4: Results of simulated attacks on the multiplication
for several levels of noise.

noise avg. number of avg. time avg. time nb.
std. dev. kept equations (1 sol.) (10 sol.) sol.

1.0 11776 8.0 ms 62.7 ms 1
2.0 11608 8.9 ms 61.1 ms 1
3.0 8545 9.5 ms 44.2 ms 1
3.5 5200 87.9 ms 81.2 ms 2

previous value to derive information on val. This previous value
actually is a sum of (unknown) coe�cients of s, which prevents
such a divide-and-conquer strategy.

To overcome this di�culty, a �rst idea would be to use a Viterbi-
like algorithm to avoid testing all possible combinations. Indeed,
accumulating in res[q] can be seen as a Markov process: the state
being the current sum and the transitions being the possible values
for s[i]. The evaluation of the probability of a sequence could be
obtained using templates or derived from a correlation coe�cient
between expected Hamming weights of the di�erent states and the
trace chunks. We experimented this approach on simulated traces
and recovered the key. However, we did not manage to obtain good
results with a high level of noise.

In highly noisy settings, the Hamming weight of a 16-bit variable
having a small absolute value (as is the case for res[q]) reveals its
sign, since the binary representation contains many leading zeros
if the value is non-negative and many leading ones in the opposite
case. Based on this simple observation, the attacker will obtain high-
con�dence constraints of the form

P�
j=1 s[i j] � 0 or

P�
j=1 s[i j] <

0. Recovering s[i]’s from those constraints is an Integer Linear
Programming (ILP) problem with no objective function (parameters
are large enough to guarantee the uniqueness of the solution).

We performed some simulations based on this second idea. Sim-
ulating the Hamming weight of 16-bit variables, correct constraint
systems were obtained up to noise standard deviation 1.5 (as ex-
pected for a Gaussian noise). Using such error-less systems and the
Gurobi ILP solver [25] the secret vectors were recovered within
a few dozen of milliseconds. To handle higher levels of noise, the
attacker should discard constraints in which he has less con�dence
(i.e. those corresponding to leakage close to the cut-o�).

Simulations have been performed up to a noise of standard devi-
ation 3.5 on a desktop computer. Results are given in Table 4. They
were obtained on a set of 50 systems for each noise level and they
show that attacks are easily performed in this range. We see that
the solver should be asked to look for more than a single solution in
some settings. Timings are provided both for situations when the
solver is asked for a single solution, and for 10 solutions. Systems
have also been produced for noise standard deviation 4.0 where
only 10% had a single solutions. Others where not solved after tens
of minutes. Ongoing experiments on a real device are expected
to provide insights about relevant parameters for the discarding
strategy and to con�rm the applicability of this attack to real-world
settings.

Note that we presented results when attacking using a single
trace. Without SCA protection, however, di�erent executions can

be combined to construct the system. Thus, the attack may work
in higher noise levels using more traces.

5.3 Attacking a blinded multiplication
Even in the case when Saarinen’s blinding countermeasure is used,
c remains sparse. Indeed, the blinding consists in shu�ing and
multiplying by a constant, so that the same sparseMult function
can still be used (with val being initialized to the blinding constant).
However, the indices of the non-zero positions of the blinded c are
unknown because the signature contains the actual c and not the
blinded one. Thus, these indices have to be recovered in addition
to their positions in the array c. Note that the signature provides
us with the non-zero positions of the blinded c up to a shift. This
information may help with the index recovery.

Recovering the c indices. Similarly to the index order recovery
step above, we exploit the timing leakage due to the if condition.
More precisely, the if branch will be taken in a q-loop as many
times as the number of indices in c that are smaller than q. Hence,
the duration of the q-loop will decrease (non-strictly) as q grows.
The steps at which an actual decrease occur correspond to the
values of q that match an index in c, which trivially reveals the
non-zero positions of the vector. As previously mentioned, we may
additionally use the knowledge of the actual c to help (since we
know the indices up to a shift).

Unblinding c. Finally, we have to recover the actual value of s.
Here, we just have to go through the n possible shift values and
the invertible constants, which is of reasonable complexity for all
BLISS parameters.

6 DISCUSSION
We have presented side-channel attacks against three parts of the
BLISS signing algorithm, namely the rejection sampling step, the
Gaussian sampling, and the multiplication of the secret key by
the hash value c. We have found them to yield full key recoveries,
either on the embedded 8-bit AVR implementation of Pöppelmann et
al. [42] through EM emanations, on in the strongSwan software [47]
on a Linux desktop machine under branch tracing. In this section,
we n discuss possible countermeasures and conclusions that one
could draw from these observations.

6.1 Attack against the rejection sampling
As we have seen, the implementation of BLISS rejection sampling,
which relies on iterated Bernoulli trials, leaks the values kSck2 and
hz, Sci. If we ignore the compression of the signature element z2,
exploiting the leakage of the scalar product to recover the secret key
is a simple matter of linear algebra; however, real implementations
do include compression, which seems to thwart that attack.

However, the leakage of the norm kSck2 does su�ce to recover
the secret key using our variant of the Howgrave-Graham–Szydlo
algorithm provided that the algebraic norm of s1 (or s2) is easy
to factor, which happens in a noticeable fraction of all cases (over
3% for the 128-bit secure parameter sets BLISS-I and BLISS-II, for
example, according to Table 2). And it seems di�cult to protect
against this attack.

10

Figure 11: Constant time, branch-free version of the sam-
pling algorithms for Bexp(�x/f) .

1: function S�����B���E��C����T���(x 2 [0, 2`) \ Z)
2: r 1
3: for i = 0 to ` � 1 do
4: Sample a Bci
5: r r · (1 � xi + axi)
6: end for
7: return r
8: end function

Hard-to-factor algebraic norms. A �rst possible countermeasure
could be to try and ensure that the algebraic norms of s1 and s2 are
hard to factor, but it isn’t clear how that could be done in practice:
just generating these values using the existing key generation al-
gorithm and eliminating “easy to factor” values seems hopeless, as
there is no such thing as an e�cient test for “hard to factor” com-
posites. Alternatively, one could try to construct these values as
products of two small, sparse elements with large prime norms (so
as to obtain RSA-like cyclotomic integers), but this would require a
signi�cant increase in all parameters (worsening the e�ciency of
BLISS to a considerable extent). Moreover, relying on the hardness
of factoring in a scheme whose main selling point is postquantum
security is quite unsatisfactory.

Constant-time implementation. A much easier possible counter-
measure could be to try and implement the iterated Bernoulli rejec-
tion sampling algorithm in constant time. Our simple power analysis
(or rather, SEMA) attack is made particularly easy in the case of
the implementation of Pöppelmann et al. [42] by the fact that al-
gorithm S�����B���E��(x) as described in Figure 2 carries out
the samplings Bci only for indices i such that the corresponding
bits xi of x are 1. This produces a trace very similar to the 1990s
SPA attacks on RSA [33, §3.1]: one can simply read the bits of x on
the trace directly (where, in our case, x = K � kSck2). The same
observation applies of course to strongSwan with respect to branch
tracing. One can make things more di�cult for the side-channel
attacker by rewriting the algorithm in such a way that the Bci
samplings are carried out all the time regardless of the value xi . We
can also eliminate data-dependent branches completely. A possible
such algorithm is described in Figure 11.

That countermeasure is probably su�cient at least in the case of
strongSwan, provided that on takes good care to precompute the
bits xi before starting the loop, and to check that the compiler does
not introduce spurious branching instructions in that computation.
Strictly speaking, however, the countermeasure does not eliminate
all leakage related to the xi ’s. For example, it involves a multipli-
cation a · xi whose operands are just bits, so one can reasonably
expect to be able to distinguish the cases xi = 0 and xi = 1 on
a power or EM trace, according to the Hamming weight leakage
model.

Rejection sampling using transcendental functions. As mentioned
in §2, one could also avoid iterated Bernoulli sampling entirely, and
carry out the rejection sampling in a single step by computing the

rejection probability every time with su�cient precision and com-
paring it to uniformly sampled randomness in a suitable interval.
However, this involves computing the transcendental functions exp
and cosh to a high precision if one doesn’t want to lose too much
accuracy at the tails of the distribution (which could in principle
jeopardize the security of the scheme via statistical attacks of the
form considered by Ducas and Nguyen against NTRUSign [16]).
Such a computation, however, would be really ine�cient, especially
on constrained devices like the 8-bit AVR microcontroller targeted
in our experiments. Moreover, it is also highly non-linear and has
a high circuit complexity, making it particularly inconvenient if
one wants to introduce more theoretically sound countermeasures
against SPA and DPA, like masking.

One could also conceivably precompute all possible values for
the probabilities involved in rejection sampling and tabulate them,
in an approach similar to CDT-based techniques for Gaussian sam-
pling. The rejection sampling step would then be fast and easy to
implement in constant time. The obvious drawback, however, is
that the storage requirement is very large: tens of thousands of high-
precision values for each parameter set, amounting to megabytes
of storage overall. This is again unsuitable on constrained devices.
It may be acceptable on desktop computers, however, but in that
setting, cache attacks become a source of concern.

Using a scheme with a simpler rejection sampling? A di�erent
approach could be to use an alternate scheme with a simpler rejec-
tion sampling algorithm. An obvious candidate is the “ancestor” of
BLISS: the lattice-based signature scheme described by Güneysu,
Lyubashevsky and Pöppelmann (GLP) in [24], which targets a uni-
form distribution in a suitable interval for the coe�cients of the
signature elements z1, z2, instead of the bimodal Gaussian distribu-
tion of BLISS. Due to that di�erence, the GLP scheme has slightly
less compact signatures: BLISS signatures at the 128-bit security
level are about 5000-bit long, while GLP signatures are about 9000-
bit long (and the bit security claim is also a bit weaker).

However, the rejection sampling step also becomes considerably
simpler: it simply involves checking whether the coe�cients of z1
and z2 fall in the expected interval. In other words, it boils down to
a collection of simple integer comparisons, which are typically fast,
constant-time operations even on the most modest platforms. More-
over, this simple rejection sampling can be easily combined with
arithmetic masking: although it is not a linear operation, masking
it amounts to masking a shallow Boolean circuit with single-bit
output, which can be done e�ciently (it can be seen as a simpler
variant of the arithmetic-to-Boolean masking conversion of Coron
et al. [10]).

6.2 Attack on the Gaussian sampling
We also showed in §4 that the variable-time algorithm for dis-
crete Gaussian sampling proposed by Ducas et al. [14] and used
in strongSwan is also a potential source of side-channel leakage.
Mounting a concrete key recovery attack only seems practical when
given access to a mostly “noise-free” attack vector like branch trac-
ing, but in that case, the attack is very powerful: it recovers the
entire secret key with high probability from the branch trace of a
single signature, and works for all keys.

11

Gaussian sampling in constant time. As we have seen above, the
function S�����B���E�� can be implemented in constant time
relatively painlessly and with a moderate performance penalty. The
same cannot be said of S�����P��G������� however: that function
carries out an a priori unbounded number of iterations, and even
though it is feasible to �x a large bound instead, the performance
penalty incurred if one were to execute the entire for loop instead
of returning early would be tremendous. Therefore, converting
this overall Gaussian sampling algorithm to constant time seems
impractical.

One could observe that implementing S�����B���E�� alone in
constant time would make the attack signi�cantly more di�cult.
This is true, but even though the attacker would no longer be able
to recover the entire output of S�����G�������, he would still be
able to compute x , and hence would get the value of z up to the
small error � located in the least signi�cant bits. In other words,
the attacker would be able to replace the large Gaussian masks yi
by much smaller noise values, which clearly a�ects the security of
the scheme.

Therefore, in any setting where resorting to a side-channel at-
tack vector similar to branch tracing is plausible, it seems prefer-
able to avoid the Gaussian sampling algorithm of Ducas et al. alto-
gether.Other algorithms for discrete Gaussian sampling are much
more practical to implement in constant time. This includes the
approach proposed by Dwarakanath and Galbraith [17] combining
Knuth–Yao with cumulative distribution tables; it su�ers from a
large storage requirements, however. The most convenient option
so far seems to be the algorithm of Micciancio and Walter [36],
which can be implemented entirely in constant time with only
integer arithmetic, and relies on an amount of storage than can
be tailored to speci�c applications: the algorithm runs faster with
more storage, but can use less storage on more constrained devices.

Alternatively, switching to a simpler signature scheme like GLP [24]
solves the problem for this source of leakage as well: the masks in
GLP are sampled with uniform coe�cients in short intervals, and
this is again straightforward to implement in a constant-time and
branch-free manner.

6.3 Attack on the multiplication by c
As seen in §5, we can also recover the secret key from power anal-
ysis/EMA traces of the computation of the products s1 · c, s2 · c of
the secret key elements with the varying hash element c computed
during signature generation (which is a sparse polynomial with
coe�cients in {0, 1}).

We have described this key recovery in the context of the Pöppel-
mann et al. implementation [42], in which c is simply represented
as the list of the positions of its non-zero coe�cients, and the prod-
ucts s1 · c, s2 · c are computed as simple sums of signed shifts of s1
and s2 respectively.

We note that even if c is instead represented as a ring element
and the products si · c are computed as generic products in the ring
(using the number-theoretic transform in Zq [x]/(xn + 1)), a DPA
attackwill still easily recover the si ’s. This is because the NTT-based
product operation is a simple component-wise product of vectors
in Znq , where the vectors corresponding to s1 and s2 are constant,
whereas the other operands of the multiplication vary with each

signature generation. Since the size of the integers involved is quite
small (q is about 14-bit long), the key recovery is feasible with
a reasonable number of traces on an arbitrary platform, and is of
course even easier on an 8-bit microcontroller, where multiplication
is carried out on 8-bit operands.

Again, protecting against such a DPA attack seems tricky. We
can suggest the following two possible approaches, but both of
them have drawbacks.

A heuristic countermeasure. What makes the DPA approach so
e�ective against this multiplication is the fact that it combines the
secret key with a variable operand cwhich is known to the adversary
since it is part of the signature. One possible approach make the
leakage harder to exploit is thus to avoid multiplying the secret
by a known value. This can be done by computing the element
zi = yi + (�1)b si · c as:

zi = c ·wi where wi = c�1 · yi + (�1)b si .
With that formula, the known value c�1 is multiplied by a secret
value yi , but since that secret value changes with each signature
generation, it is much more di�cult to exploit the corresponding
leakage with DPA (although a single-trace template attack may still
apply when the adversary has access to an identical device). As for
the product of c with wi , the corresponding leakage should not be
an issue since wi can be recovered from the available signature
elements anyway (in case the iteration corresponds to a signature
that is actually output; for values eliminated in rejection sampling,
the argument does not hold, but c is not known in that case either).

This provides a heuristic countermeasurewhichmay help against
DPA attacks (although a quantitative evaluation of the e�ectiveness
of that countermeasure is left for future work). It can be seen as an
alternative to Saarinen’s countermeasure [45], which does thwart
the stronger attacks of §5. It does have a number of limitations
however. As we have noted, it may still be defeated by template
attacks. Moreover, it involves the computation of the inversion
c�1, which would typically be carried out in the Fourier domain
(so it amounts to a series of inversions in Zq). This is a somewhat
costly operation on constrained devices, and has the additional
drawback of requiring c to be invertible (which happens with prob-
ability (1 � 1/q)n ⇡ 0.96, which is high but still less than 1). And
since c�1 has full size coe�cients modulo q, one cannot use a naive
multiplication taking advantage of the sparsity of c: relying on a
full-blown number-theoretic transform seems necessary to achieve
satisfactory performance.

Arithmetic masking. It is also possible to achieve provable secu-
rity against DPA (at least in the so-called t-probing model, which
is known to capture realistic leakage scenarios [44]) using arith-
metic masking (with the caveat that, again, template attacks still
apply [39]). The linearity of the multiplication by c makes it partic-
ularly easy to mask. However, the entire signing algorithm needs to
be masked for the security argument to be valid. In particular, one
also needs to mask the generation of the random Gaussian values
y1, y2, which seems di�cult, and the rejection sampling, which we
have already noted sounds even harder. These highly non-linear op-
erations constitute a major stumbling block for applying a masking
countermeasure.

12

Thus, onemay againwant to consider an alternate scheme involv-
ing simpler operations, like the GLP scheme mentioned earlier [24].
In that scheme, y1 and y2 are sampled from uniform distributions
in suitable intervals, so that a masked sampling is reasonably easy
to implement. The generation of u, z1, z2 remains linear, and as
noted above the rejection sampling can be masked easily as well.
This may make the larger signature size an acceptable trade-o� to
achieve good security against physical attacks.

REFERENCES
[1] Onur Aciiçmez, Shay Gueron, and Jean-Pierre Seifert. 2007. New Branch Predic-

tion Vulnerabilities in OpenSSL and Necessary Software Countermeasures. In
IMACC (LNCS), Steven D. Galbraith (Ed.), Vol. 4887. Springer, 185–203.

[2] Onur Aciiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. 2007. On the Power
of Simple Branch Prediction Analysis. In ASIACCS, Feng Bao and Steven Miller
(Eds.). ACM, 312–320.

[3] Onur Aciiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. 2007. Predicting Secret
Keys Via Branch Prediction. In CT-RSA (LNCS), Masayuki Abe (Ed.), Vol. 4377.
Springer, 225–242.

[4] Sedat Akleylek, Nina Bindel, Johannes A. Buchmann, Juliane Krämer, and Gior-
gia Azzurra Marson. 2016. An E�cient Lattice-Based Signature Scheme with
Provably Secure Instantiation. In AFRICACRYPT (LNCS), David Pointcheval, Ab-
derrahmane Nitaj, and Tajjeeddine Rachidi (Eds.), Vol. 9646. Springer, 44–60.

[5] Nina Bindel, Johannes A. Buchmann, and Juliane Krämer. 2016. Lattice-Based
Signature Schemes and Their Sensitivity to Fault Attacks. In FDTC, Philippe
Maurine and Michael Tunstall (Eds.). IEEE Computer Society, 63–77.

[6] Yuval Bistritz and Alexander Lifshitz. 2010. Bounds for resultants of univariate
and bivariate polynomials. Linear Algebra Appl. 432, 8 (2010), 1995–2005. Special
issue devoted to the 15th ILAS Conference.

[7] Matt Braithwaite. 2016. Experimenting with Post-Quantum Cryptogra-
phy. (2016). https://security.googleblog.com/2016/07/experimenting-with-post-
quantum.html

[8] Leon Groot Bruinderink, Andreas Hülsing, Tanja Lange, and Yuval Yarom. 2016.
Flush, Gauss, and Reload: A Cache Attack on the BLISS Lattice-Based Signature
Scheme. In CHES (LNCS), Benedikt Gierlichs and Axel Y. Poschmann (Eds.),
Vol. 9813. Springer, 323–345.

[9] Henri Cohen. 1993. A Course in Computational Algebraic Number Theory. Number
138 in Graduate Texts in Mathematics. Springer.

[10] Jean-Sébastien Coron, Johann Großschädl, Mehdi Tibouchi, and Praveen Kumar
Vadnala. 2015. Conversion fromArithmetic to BooleanMasking with Logarithmic
Complexity. In FSE (LNCS), Gregor Leander (Ed.), Vol. 9054. Springer, 130–149.

[11] Özgür Dagdelen, Rachid El Bansarkhani, Florian Göpfert, Tim Güneysu, Tobias
Oder, Thomas Pöppelmann, Ana Helena Sánchez, and Peter Schwabe. 2014.
High-Speed Signatures from Standard Lattices. In LATINCRYPT (LNCS), Diego F.
Aranha and Alfred Menezes (Eds.), Vol. 8895. Springer, 84–103.

[12] Richard Dedekind. 1878. Uber den Zusammenhang zwischen der Theorie der
Ideale und der Theorie der hoheren Kongruenzen. Abhandlungen der Koniglichen
Gesellschaft der Wissenschaften zu Gottingen 23 (1878), 1–23.

[13] Léo Ducas. 2014. Accelerating BLISS: the geometry of ternary polynomials.
Cryptology ePrint Archive, Report 2014/874. (2014). http://eprint.iacr.org/.

[14] Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky. 2013.
Lattice Signatures and Bimodal Gaussians. In CRYPTO (LNCS), Ran Canetti and
Juan A. Garay (Eds.), Vol. 8042. Springer, 40–56.

[15] Léo Ducas and Tancrède Lepoint. 2013. BLISS: Bimodal Lattice Signature Schemes.
(June 2013). http://bliss.di.ens.fr/bliss-06-13-2013.zip (proof-of-concept imple-
mentation).

[16] Léo Ducas and Phong Q. Nguyen. 2012. Learning a Zonotope and More: Crypt-
analysis of NTRUSign Countermeasures. In ASIACRYPT (LNCS), Xiaoyun Wang
and Kazue Sako (Eds.), Vol. 7658. Springer, 433–450.

[17] Nagarjun C. Dwarakanath and Steven D. Galbraith. 2014. Sampling from discrete
Gaussians for lattice-based cryptography on a constrained device. Appl. Algebra
Eng. Commun. Comput. 25, 3 (2014), 159–180.

[18] Thomas Espitau, Pierre-Alain Fouque, Alexandre Gélin, and Paul Kirchner. 2016.
Computing Generator in Cyclotomic Integer Rings. IACR Cryptology ePrint
Archive 2016 (2016), 957.

[19] Thomas Espitau, Pierre-Alain Fouque, Benoît Gérard, and Mehdi Tibouchi. 2016.
Loop-Abort Faults on Lattice-Based Fiat–Shamir and Hash-and-Sign Signatures.
In SAC (LNCS), Roberto Avanzi and Howard Heys (Eds.). Springer. To appear.

[20] Craig Gentry, Jakob Jonsson, Jacques Stern, and Michael Szydlo. 2001. Cryptanal-
ysis of the NTRU Signature Scheme (NSS) from Eurocrypt 2001. In ASIACRYPT
(LNCS), Colin Boyd (Ed.), Vol. 2248. Springer, 1–20.

[21] Craig Gentry and Michael Szydlo. 2002. Cryptanalysis of the Revised NTRU
Signature Scheme. In EUROCRYPT (LNCS), Lars R. Knudsen (Ed.), Vol. 2332.
Springer, 299–320.

[22] Oded Goldreich, Sha� Goldwasser, and Shai Halevi. 1997. Public-Key Cryptosys-
tems from Lattice Reduction Problems. In CRYPTO (LNCS), Burton S. Kaliski, Jr.
(Ed.), Vol. 1294. Springer, 112–131.

[23] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. 2015. Cache Template
Attacks: Automating Attacks on Inclusive Last-Level Caches. In USENIX Security,
Jaeyeon Jung and Thorsten Holz (Eds.). USENIX Association, 897–912.

[24] Tim Güneysu, Vadim Lyubashevsky, and Thomas Pöppelmann. 2012. Practical
Lattice-Based Cryptography: A Signature Scheme for Embedded Systems. In
CHES (LNCS), Emmanuel Prou� and Patrick Schaumont (Eds.), Vol. 7428. Springer,
530–547.

[25] Gurobi Optimization, Inc. 2016. Gurobi Optimizer Reference Manual. (2016).
http://www.gurobi.com

[26] Nishad Herath and Anders Fogh. 2015. CPU Hardware Performance Counters
for Security. BlackHat USA 2015 brie�ng. (2015). http://www.blackhat.com/us-
15/brie�ngs.html#these-are-not-your-grand-daddys-cpu-performance-
counters-cpu-hardware-performance-counters-for-security

[27] Je�rey Ho�stein, Nick Howgrave-Graham, Jill Pipher, Joseph H. Silverman, and
William Whyte. 2003. NTRUSign: Digital Signatures Using the NTRU Lattice. In
CT-RSA (LNCS), Marc Joye (Ed.), Vol. 2612. Springer, 122–140.

[28] Je�rey Ho�stein, Jill Pipher, John M. Schanck, Joseph H. Silverman, and William
Whyte. 2014. Practical Signatures from the Partial Fourier Recovery Problem. In
ACNS (LNCS), Ioana Boureanu, Philippe Owesarski, and Serge Vaudenay (Eds.),
Vol. 8479. Springer, 476–493.

[29] James Howe, Thomas Pöppelmann, Máire O’Neill, Elizabeth O’Sullivan, and Tim
Güneysu. 2015. Practical Lattice-Based Digital Signature Schemes. ACM Trans.
Embedded Comput. Syst. 14, 3 (2015), 41.

[30] James Howe, Thomas Pöppelmann, Máire O’Neill, Elizabeth O’Sullivan, Tim
Güneysu, and Vadim Lyubashevsky. 2015. Practical Lattice-Based Digital Signa-
ture Schemes. Slides of the presentation at the NISTWorkshop of Cybersecurity in
a Post-Quantum World. (2015). Available at http://csrc.nist.gov/groups/ST/post-
quantum-2015/presentations/session9-oneill-maire.pdf.

[31] Nick Howgrave-Graham andMichael Szydlo. 2004. AMethod to Solve Cyclotomic
Norm Equations. In ANTS (LNCS), Duncan A. Buell (Ed.), Vol. 3076. Springer,
272–279.

[32] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji-Hye Lee, Donghyuk Lee,
Chris Wilkerson, Konrad Lai, and Onur Mutlu. 2014. Flipping bits in memory
without accessing them: An experimental study of DRAM disturbance errors. In
ISCA. IEEE Computer Society, 361–372.

[33] Paul C. Kocher, Joshua Ja�e, Benjamin Jun, and Pankaj Rohatgi. 2011. Introduction
to di�erential power analysis. J. Cryptographic Engineering 1, 1 (2011), 5–27.

[34] Vadim Lyubashevsky. 2009. Fiat–Shamir with Aborts: Applications to Lattice
and Factoring-Based Signatures. In ASIACRYPT (LNCS), Mitsuru Matsui (Ed.),
Vol. 5912. Springer, 598–616.

[35] Vadim Lyubashevsky. 2012. Lattice Signatures without Trapdoors. In EUROCRYPT
(LNCS), David Pointcheval and Thomas Johansson (Eds.), Vol. 7237. Springer,
738–755.

[36] Daniele Micciancio and Michael Walter. 2017. Gaussian Sampling over the
Integers: E�cient, Generic, Constant-Time. IACR Cryptology ePrint Archive 2017
(2017), 259. http://eprint.iacr.org/2017/259

[37] Michael Naehrig and others. 2016. Lattice Cryptography Library (version
1.0). (Dec. 2016). https://www.microsoft.com/en-us/research/project/lattice-
cryptography-library

[38] Phong Q. Nguyen and Oded Regev. 2009. Learning a Parallelepiped: Cryptanalysis
of GGH and NTRU Signatures. J. Cryptology 22, 2 (2009), 139–160.

[39] Elisabeth Oswald and Stefan Mangard. 2007. Template Attacks on Masking -
Resistance Is Futile. In CT-RSA (LNCS), Masayuki Abe (Ed.), Vol. 4377. Springer,
243–256.

[40] Chris Peikert. 2010. An E�cient and Parallel Gaussian Sampler for Lattices. In
CRYPTO 2010 (LNCS), Tal Rabin (Ed.), Vol. 6223. Springer, 80–97.

[41] Thomas Pöppelmann, Léo Ducas, and Tim Güneysu. 2014. Enhanced Lattice-
Based Signatures on Recon�gurable Hardware. In CHES (LNCS), Lejla Batina and
Matthew Robshaw (Eds.), Vol. 8731. Springer, 353–370.

[42] Thomas Pöppelmann, Tobias Oder, and Tim Güneysu. 2015. High-Performance
Ideal Lattice-Based Cryptography on 8-Bit ATxmega Microcontrollers. In LAT-
INCRYPT (LNCS), Kristin E. Lauter and Francisco Rodríguez-Henríquez (Eds.),
Vol. 9230. Springer, 346–365.

[43] The OpenSSL project. 2017. (2017). https://www.openssl.org/news/openssl-1.0.2-
notes.html

[44] Emmanuel Prou� and Matthieu Rivain. 2013. Masking against Side-Channel
Attacks: A Formal Security Proof. In EUROCRYPT (LNCS), Thomas Johansson
and Phong Q. Nguyen (Eds.), Vol. 7881. Springer, 142–159.

[45] Markku-Juhani O. Saarinen. 2017. Arithmetic coding and blinding countermea-
sures for lattice signatures. Journal of Cryptographic Engineering (2017), 1–14.
https://doi.org/10.1007/s13389-017-0149-6

[46] Andreas Ste�en. 2015. Bimodal Lattice Signature Scheme (BLISS) in strongSwan.
(2015). https://wiki.strongswan.org/projects/strongswan/wiki/BLISS

13

https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
http://eprint.iacr.org/
http://bliss.di.ens.fr/bliss-06-13-2013.zip
http://www.gurobi.com
http://www.blackhat.com/us-15/briefings.html#these-are-not-your-grand-daddys-cpu-performance-counters-cpu-hardware-performance-counters-for-security
http://www.blackhat.com/us-15/briefings.html#these-are-not-your-grand-daddys-cpu-performance-counters-cpu-hardware-performance-counters-for-security
http://www.blackhat.com/us-15/briefings.html#these-are-not-your-grand-daddys-cpu-performance-counters-cpu-hardware-performance-counters-for-security
http://csrc.nist.gov/groups/ST/post-quantum-2015/presentations/session9-oneill-maire.pdf
http://csrc.nist.gov/groups/ST/post-quantum-2015/presentations/session9-oneill-maire.pdf
http://eprint.iacr.org/2017/259
https://www.microsoft.com/en-us/research/project/lattice-cryptography-library
https://www.microsoft.com/en-us/research/project/lattice-cryptography-library
https://www.openssl.org/news/openssl-1.0.2-notes.html
https://www.openssl.org/news/openssl-1.0.2-notes.html
https://doi.org/10.1007/s13389-017-0149-6
https://wiki.strongswan.org/projects/strongswan/wiki/BLISS

[47] Andreas Ste�en and others. 2017. strongSwan: the Open Source IPsec-based VPN
Solution (version 5.5.2). (March 2017). https://www.strongswan.org/

[48] Joachim von zur Gathen and Daniel Panario. 2001. Factoring Polynomials Over
Finite Fields: A Survey. Journal of Symbolic Computation 31 (2001), 3 – 17.

A HOWGRAVE-GRAHAM–SZYDLO
ALGORITHM IN POWER-OF-TWO
CYCLOTOMIC FIELDS

We present a generalization of the Howgrave-Graham-Szydlo al-
gorithm to power-of-two cyclotomic �elds. The original procedure
solves the problem of recovering an element f of the ring of inte-
gers of a cyclotomic �eld of prime conductor l given its relative
norm f · f̄ . factorization. This problem is computationally hard
since it relies heavily on the factorisation of the algebraic norm of
f over the integers.

A.1 Background on Algebraic Number Theory
A.1.1 Number fields. Let K = Q(�) be a number �eld of dimen-

sion n, then there exists a monic irreducible degree-n polynomial
P 2 Z[X] such that K ' Q[X]/(P).

A.1.2 Integers and Ring of integers. The ring of integers OK of a
number �eldK of degreen is a free Z-module of rankn, i.e. the set of
all Z-linear combinations of some integral basis {b1, . . . ,bn } ⇢ OK .
It is also a Q-basis for K . In the case of cyclotomic �eld, the power
basis {1, �m , . . . , � n�1m } is an integral basis of the cyclotomic ring
Z[�m]. An (integral) ideal a ✓ OK is an additive subgroup closed
under multiplication, i.e. r · � 2 a for any r 2 OK and � 2 a.
A fractional ideal a ⇢ K is a set such that d · a is an integral
ideal for some d 2 OK . The inverse a�1 of an ideal a is the set
{a 2 K : a · a ✓ OK }.

An ideal a in OK is �nitely generated as the set of all K-linear
combinations of some generators �1,�2, . . . 2 OK , denoted a =
(�1,�2, . . .). An ideal a is called principal if a = (�) for � 2 OK .
An ideal (integral or fractional) as a free Z-module of rank n, is
generated as the set of all Z-linear combinations of some basis
{b1, . . . ,bn } ⇢ OK .

Let a, b be ideals of a ringR. Their sum a+b = {a+b : a 2 a,b 2 b}
and their product ab = {a · b : a 2 a,b 2 b} generated by all
products of elements in a with elements of b are also ideals. Two
ideal a, b ✓ OK are called coprime (or relatively prime) if a+b = OK .

The (absolute) norm of an ideal a ✓ OK isN (a) = |OK /a |, which
is the size of this quotient ring. It is well-known that the norm is
multiplicative: N (ab) = N (a)N (b). For a 2 OK and a = (a) a
principal ideal generated by a, N (a) = |N (a) |.

One of the most striking properties of ring of integers is the
analogue of the unique prime decomposition theorem of integers,
but for ideals:

T������ A.1 (U���� F������������ �� I�����). Every ideal
in OK is uniquely representable as a product of prime ideals.

When considering two integer rings OK ✓ OL the assertion "P
lies above p" means that pOL = Pe · a for some ideal a ✓ OL . That
is: P appears in the prime factorization of the ideal pOL ✓ OL .
Therefore, in the case where L = Q, OL = Z and the assertion “P
lies above the prime p” equivalently means that P \ Z = (p).

A.1.3 Cyclotomic fields and Cyclotomic Integers. We denote by
�m them-th cyclotomic polynomial, that is the unique monic irre-
ducible polynomial in Q[X] dividing Xm � 1 that is not a divisor
of any of the Xk � 1 for k < m. Its roots are thus them-th primi-
tive roots of the unity. Therefore, cyclotomic polynomials can be
written in closed form as:

�m (X) =
Y

k 2Z⇤m

⇣
X � e2i�k/m

⌘
.

Them-th cyclotomic �eld Q(�m) is obtained by adjoining a primi-
tivem-th root �m of unity to the rational numbers. As such,Q(�m) is
isomorphic to the splitting �eldQ[X]/(�m (X)). Its degree overQ is
deg(�m) = � (m), where � is the Euler totient function. In this spe-
ci�c number �eld, the ring of integers is precisely Z[X]/(�m (X)) �
Z[�m]. Remark that in any cyclotomic �eld Q(�m), Q(�m + � �1m)
is a sub�eld of index 2 in Q(�m). This is the maximal totally real
sub�eld of Q(�m). The (absolute) norm of an ideal of the maximal
totally real sub�eld will be simply denoted by N+ from now on.

Let suppose from now on thatm is a power of two andm = 2n.
We present an algorithm to solve degree-two norm equations of
the �eld extension Q[�m]/Q[�m + � �1m]. Formally given a secret
element f 2 Z[�m] we want to recovers it from the sole knowledge
of f · f̄ , the relative norm of f in the maximal totally real sub�eld.
Equivalently, when dealing with the polynomial representation of
the cyclotomic �eld, the considered algorithm aims to solve the
following problem:

P������ 1 (N��� ������� ���� ��� ������� ���� ��������).
Let n be a power of two,m = 2n and f 2 R = Z[X]/(Xn + 1) the
ring of integers of them-th cyclotomic �eld. Let � = f · f̄ . Given the
element �, recover f .

A.2 Description of Howgrave-Graham & Szydlo
algorithm

The algorithm extracts the information contained in the relative
norm f · f̄ by �rst descending it to the rationals where we can factor
it and derive from it the absolute norm of f (Step I). Then it lifts all
these pieces of information to the base �eld to yield candidate ideals
verifying the same norm equations as the principal ideal (f)(Step
II). If we get the guarantee that one of them at least is principal,
alongside with the possibility to easily retrieve the corresponding
generator, then this latter element will be solution of the norm
equation(Step III). Let now make this intuition more precise.

A.2.1 (Step I) Norm computation. The �rst step aims to com-
pute the norm of the element f over the ground �eld Q. Since the
ideal norm is multiplicative, it corresponds to the square norm of
N (f · f̄) or equivalently to the absolute norm in the maxial real
sub�eld: N+ (f · f̄). Let assume for simplicity that this norm is a
power of a prime number p from now on, so that N (f) = p� . A
discussion on the way to adapt the algorithm to the generic case
is conducted below. Except from the very speci�c case of p = 2
(rami�ed case) which is treated separately, two cases occurs: either
p ⌘ 1 mod 4, or p ⌘ 3 mod 4.

A.2.2 (Step II) Creation of the candidate ideal(s). Let study sepa-
rately what occurs in the two sub-cited cases. The case p ⌘ 1 mod 4

14

https://www.strongswan.org/

splits itself into two subcases, depending on wether N (f) is prime
or prime-power.

Case p ⌘ 1 mod 4,� = 1.. One could be surprised by dealing
separately with an apparently such restrictive case, but it appears
that this case is in fact somehow a generic case. Indeed, the density
of prime ideal of norm a strict prime power among all prime ideals
is zero. More generally the density of ideals of prime norm among
all ideals of prime-power norm is one. Hence, the case � = 1 is in
this sense generic.

Moreover, if an ideal has an odd prime norm p, then necessarily
p ⌘ 1 mod 4. Indeed, if p was congruent to 3 modulo 4, it would
be inert in Z[i]. As such the ideal (f) would have a norm over Z[i]
divisible by pZ[i], meaning that p2 would divide N (f) = p in Z.
Contradiction.

(II-1) Split of prime in Q[i]. Now that we obtained the norm p,
we can consider the principal ideal (p) generated by this prime in
the sub�eld Q[i] ⇢ Q[�m]. The ideal (p) splits into two distinct con-
jugate prime ideals in Z[i]: (p) = (a+ ib) · (a� ib), as a consequence
of Fermat’s theorem on sums of two squares4.

(II-2) Lift of ideal. Let consider one of the ideal (a ± ib) of Z[i]
resulting from the splitting on the quadratic sub�eld, and lift it
the whole cyclotomic �eld, that is seeing it as an ideal of Z[�m] —
which is considering the ideals (a + ib)Z[�m] and (a � ib)Z[�m] — .
By notational abuse we also denote by (a + ib) (resp. (a � ib)) the
ideal lifted from (a + ib) (resp. (a � ib)).

From these two ideals, we can construct two candidate ideals
a+ and a� respectively de�ned as the ideals (a + ib) + (f · f̄) and
(a � ib) + (f · f̄), each of then satisfying the norm equation a · ā =
(f · f̄).

At least one of this candidate ideal is principal and by con-
struction its generator will be solution of the norm equation. The
schematic representation of the algorithm in this case is presented
in Figure 12.

Case p ⌘ 1 mod 4,� > 1.. For any prime idealP dividing (f ⇤ f̄),
appearing with multiplicity t in its decomposition, P can appear in
the decomposition of (f) with multiplicity 0  i  t , implying that
P̄ will appear with multiplicity t � i in the decomposition of (f).
As such one of the 1 + t such ideals appears in the decomposition
of (f).

In order to compute (f), we thus need to compute the prime
decomposition of (f · f̄) and test for the possible multiplicities
of each prime ideal of its decomposition. Since we know that the
algebraic norm of f · f̄ isp� , we also know that its prime divisors are
all primes over p. Then after �rst enumerating the prime ideals over
p, with Berlekamp’s algorithm for instance, we test the divisibility
of (f · f̄) by each of their exponentiation. By multiplicativity of
the norm each prime ideal can only appear with multiplicity lower
than � .

Once the prime decompositions (f · f̄) =Q
i p

ti
i

¯(pi)
ti is obtained,

we can construct the candidate ideals by computing the products of
exactly one ideal of the form pki ¯(pi)

ti�k among the 1 + ti possibles
for each (pi , p̄i) pair of conjugate primes, divisors of (f · f̄).
4Indeed, in that case p can be written as the sum of two squares a2 + b2 , yielding
directly the announced decomposition.

Case p ⌘ 3 mod 4. In this case p is inert in Z[i], and then we
can not construct a list of candidate from the decomposition in
the quadratic �eld as in step II-1 of the previous case. Nonetheless
this case is somehow simpler: the ideal (f) in Z[�m] is actually
invariant under the conjugation map. Indeed if we decompose (f)
in prime ideals: (f) =

Q
i p

ei
i , each ideal pi is necessarily a real

prime ideal over p. Indeed, the norm of each pi over Q(i) is also
real as being a prime over p in Z[i], that is (p) itself since p is inert.
As a consequence, (f · f̄) = (f)2, and we only need to compute the
square root of the principal ideal generated by the norm (f · f̄) to
recover (f). This can be done easily by �rst decomposing (f · f̄) in
prime ideals and then dividing the valuation of each prime by two.
For notational simplicity and consistence with the ideals generated
for the case p ⌘ 1 mod 4, we will also denote the recovered ideal
(f) as I and call it a candidate ideal. The schematic representation
of the algorithm in this case is presented in Figure 13.

A.2.3 (Step III) Generator recovery. This �nal step is now com-
mon for the two cases. Given one — or the unique — of the candidate
I —which is supposed to be principal — as well as the element f · f̄ ,
generator of the ideal I · Ī by construction, the Gentry-Szydlo [21]
algorithm can be called to recover f up to a root of unity. In the
case where I is not principal 5, the latter algorithm returns an error,
giving hence a method to distinguish principal candidates from
others. For completeness purpose we recall the basic aspects of this
�nal tool in the case where I = (f).

Surprisingly enough the data given by only the relative norm
and the ideal are su�cient to recover the generator in polynomial
time. We recall that given only the basis of an ideal I, computing a
generator is computationally hard, this corresponds indeed to the
so-called Principal Ideal Problem. State-of-the-art algorithms for PIP
are still subexponential time [18].

The main idea of the Gentry-Szydlo algorithm, more precisely
described in [21], is to combine algebra in number �eld with lattice
reduction techniques. Using Fermat’s Little Theorem, for a prime q,
we have f q = f over Rq = Z/qZ[X]/(Xm + 1), the cyclotomic ring
of integers reduced mod q. Unless f is a zero divisor in Rq 6 we
have f q�1 = 1 over Rq . Assume we compute a LLL-reduced basis
B of the ideal (f q�1) in polynomial time inm, q and the bit-length
of f , we will �nd a shortest element w = f q�1 · a for some a. If
kak1 < q/2, we get a = [w]q exactly and thus f q�1. Then, we can
recover f up to a root of unity in polynomial time.

A.3 The case p = 2
The last case is p = 2, which is very speci�c since 2 is the only
prime that rami�es in Q[�m]. It is in fact totally rami�ed, since
Z[�m]/2Z[�m] � F2[X]/(Xn + 1) � F2[X]/(X + 1)n (because n is
a power of two). In particular, the only prime above 2 is (1 + �m).
As such (f) = (1 + �)� , giving directly f up to a unit of the �eld.

Before seeing how these algebraic considerations can be applied
to exploit side-channel traces, let us see how to generalize the latter
described algorithm in the case of a composite norm N (f).

5As mentioned, this case can only occur when p ⌘ 1 mod 4.
6There are only poly(m, logN (f)) primes q for which it is the case.

15

A.4 Composite case
Due to the inherent multiplicative structure of the problem, know-
ing how to solve it for every element whose norm is a prime power
is actually su�cient to solve any instance. Indeed, we perform a
reasoning à la Chinese reminder theorem, that is, dealing separately
with every prime power factor thanks to the studies we just carried
out and multiplicatively recompose these chunks of solutions.

Thus, the algorithm starts exactly as before, by computing the
algebraic norm of the element f , as the square root of the norm of
f · f̄ . In order to deal with every prime factors, we then factor this
norm in:

N (f) = 2�2 ·
Y

i
p�ii ·

Y

j
q
� j
j ,

where the (pi)i are the prime factors congruent to 1 modulo 4 and
the (qi)i are the prime factors congruent to 3 modulo 4.

We �rst take care of the primes (pi)i congruent to 1 modulo 4.
For primes appearing with multiplicity one, applying the technique
described in Section A.2.2 each prime pi yields exactly two ideals
above itself divisors of (f), along with the guarantee that at least
one of them is principal. As such, since the (pi)i are coprimes, we
can construct 2T possible products, for T the number of primes
appearing with multiplicity 1, obtained by taking exactly one ideal
above each pi . Let C1 this set of ideals.

And now let treat the primes appearing with multiplicity greater
than one. In order to fall back on the cases described in section A.2.2,
we need to construct an ideal of norm p�ii dividing the principal
ideal generated by the relative norm (f · f̄). This is simply the
sum of the latter ideal with the principal ideal generated by the
element p�ii 2 Z[�]. Then applying the technique described in
Section A.2.2 each prime pi yields a certain number ci of candidate
ideals above p�ii divisors of (f), along with the guarantee that at
least one of them is principal. As such, since the (pi)i are coprimes,
the 2T

Q
i ni possible products obtained by taking exactly one ideal

above each p�ii and one ideal from the set C1, are divisors of (f),
above

Q
i p

�i
i =

N (f)
2�2 ·Qj q

�j
j
. At least one of them is principal.

We then treat the case of the primes (qj)j congruent to 3 modulo
4. Let qj one of those prime appearing in the factorization ofN (f).
In order to fall back on the cases described in section A.2.2, we
need to construct a real ideal N of norm q

� j
j dividing the principal

ideal generated by the relative norm (f · f̄). This is simply the
sum of the latter ideal with the principal ideal generated by the
element q� jj 2 Z[�]. As in A.2.2 we construct a principal Iqj of
normq

� j
j dividing (f). Performing this construction on every prime

qj and denoting by R the product of each freshly obtained Iqj ,
ensures that the principal ideal R is a divisor of the ideal (f) above
Q

j q
� j
j =

N (f)
2�2 ·Qi p

�i
i
.

Finally, we deal with the power of two appearing in the norm.
The reasoning is similar to what happens in Section A.3: the prime
power principal ideal D = (1 + �m)�2 is a divisor of (f) above 2�2 .

It is now time to reconstruct candidate ideals from these three
parts. Multiplying each of the

Q
i (1+�i) candidates obtained from

the (pi)i with the principal ideal R ·D yields an candidate ideal of
normN (f). Eventually, taking the sum with the ideal (f · f̄) gives
then a list of

Q
i (1+�i) ideals satisfying the norm equation, with the

guarantee that at least one of them is principal. The �nal step of the
algorithm is then unchanged: �nding the generator of the principal
ideal by the use of Gentry-Szydlo. Amethod of reducing the running
time of this �nal phase is to process all possible candidate ideals in
parallel and stops as soon as one of the process returns a generator.
The full outline of the algorithm is given in Figure 14.

A.4.1 Remarks on complexity. Performing operations on ideals
in a n-dimensional number �eld is polynomial in n, since when
working with HNF representation of ideals, the computations of
sum, product or intersections of ideals boils down to basic linear
algebra computations and calls to an HNF oracle, which is known
to be polynomial in the dimension (see for instance Chapter 3 to 5
of [9] for a complete introduction to computations with ideals). As
early mentioned by Dedekind in [12], computing the decomposition
in prime ideals of a given prime7 boils down to factor the de�n-
ing polynomial of the �eld �m modulo p, which can be e�ciently
performed by the Cantor-Zassenhaus algorithm or Berlekamp al-
gorithm [48].

As pointed out in [21] the Gentry-Szydlo algorithm runs in poly-
nomial time in the dimension of the �eld.

A.5 Estimation of the algebraic norm of secrets
Let s be one of the secret elements s1, s2. Note that N (s) is equal
to the resultant of s (explicitly, the lift of s in Z[X] from its repre-
sentation in Z[�] ' Z[X]/(�n (X))) and �n (X) = Xn + 1 the 2n-th
cyclotomic polynomial. A classical bound on univariate resultant
(see [6] for instance) coming from Hadamard inequalities on the
Sylvester matrix, ensures that:

|res(A,B) |  kAkb2 kBka2 ,
where deg(A) = a, deg(B) = b and k.k denotes classically the L2
norm of the coe�cients. Consequently, |N (s) |  2

n
2

✓q
�21 + 4�

2
2n

◆n
,

yielding directly that

log |N (f) |  n

2

✓
log(n

q
�21 + 4�

2
2) + 1

◆
.

B FURTHER DETAILS ON BLISS
This appendix includes a description of the BLISS key generation
and veri�cation algorithms, provided in Figure 15, and for reference
also includes the list of proposed BLISS parameters in Table 5

C CODE OF THE STRONGSWAN ATTACKS
This appendix presents the source code of our implementation of
the branch tracing attacks of §3.4 and §4 against strongSwan. The
target program is shown in Figure 16. The perl script that parses the
output of the perf command for the rejection sampling attack is
shown in Figure 17, and the shell script that runs the corresponding
full attack is shown in Figure 18. As for the attack on the discrete
Gaussian sampling, we describe the corresponding perl parser in
Figure 20–21.

7In full generality, this is the case only when p does not divide the index [OK : Z[�]]
for OK the ring of integers ofK and � a primitive element of the number �eldK. Since
this index is always 1 for cyclotomic �elds, the factorization can always be carried by
the above-mentioned technique.

16

n q (�1,�2) � �

BLISS-0 256 7681 (0.55, 0.15) 100 12
BLISS-I 512 12289 (0.3, 0) 215 23
BLISS-II 512 12289 (0.3, 0) 107 23
BLISS-III 512 12289 (0.42, 0.03) 250 30
BLISS-IV 512 12289 (0.45, 0.06) 271 39

Table 5: Parameter sets for BLISS proposed by the authors
of [14]. The claimed security levels are of 60, 128, 128, 160
and 192 bits respectively.

17

Q[�m]

I candidate such that I · Ī = (f · f̄)

Q[�m + � �1m](f · f̄) ⇢

Q

NQ[�m]/Q (f) = p

Q[i] � a+; a�

Gentry-Szydlo(I, (f · f̄))

(I) Norm computation

(II-1) Split of prime in quadratic �eld

(II-2) Lift of ideal and composition with the relative norm

(III) Generator recovery

Figure 12: Recovery of the generator f from its relative norm: Case p ⌘ 1 mod 4.

Q[�m]

I candidate such that I · Ī = (f · f̄)

Q[�m + � �1m](f · f̄) ⇢

Q

NQ[�m]/Q (f) = p
�

Gentry-Szydlo(I, (f · f̄))

(I) Norm computation

(II) Computing square root of (f · f̄) in Z[�m]

(III) Generator recovery

Figure 13: Recovery of the generator f from its relative norm: Case p ⌘ 3 mod 4.

18

Figure 14: Generalized Howgrave-Graham-Szydlo algo-
rithm.

Input Relative norm f · f̄ .
Output Algebraic integer � such that � · �̄ = f · f̄ .

(1) Compute the norm N (f) as
q
N (f · f̄)

(2) Factor N (f) in prime product
Q
i p

�i
i

(3) for each pi such that p ⌘ 3 mod 4 do
(4) Split the ideal (f · f̄) + (p�ii) of Z[�m] in primes:

Q
j p

ej

(5) Ipi
Q

j p
ej /2

(6) end for
(7) R Q

pi⌘3[4] Ipi
(8) D (1 + �)�2
(9) for each pi such that p ⌘ 1 mod 4 and �i = 1 do
(10) Split (pi) in Z[i] as (a + ib), (a � ib)
(11) Lift (a + ib), (a � ib)in Z[�]
(12) a+ (a + ib) + (f · f̄)
(13) a� (a � ib) + (f · f̄)
(14) Cpi {a+, a� }
(15) end for
(16) for each pi such that p ⌘ 1 mod 4 and �i > 1 do
(17) Factor (f · f̄) + (p�ii) as

Q
j p

tj
j .

(18) for each (pj , p̄j) of the decomposition do
(19) Cpi , (pj ,p̄j) {p

tj
j , · · · , pkj · p̄j tj�k , · · · , p̄j tj }

(20) end for
(21) Cpi {

Q
b2B b | B 2 Q

j Cpi , (pj ,p̄j) }
(22) end for
(23) for each A 2 Q

pi⌘1[4] Cpi do
(24) I RD ·Qb2A b
(25) if Gentry-Szydlo (I, f · f̄) outputs � 2 Z[�] then
(26) return �
(27) end if
(28) end for

1: function K��G��()
2: sample f, g 2 R = Z[x]/(xn + 1), uniformly with d�1n e coe�-

cients in {±1}, d�2n e coe�cients in {±2} and 0 otherwise
3: S = (s1, s2)T (f, 2g + 1)T
4: if N� (S) � C2 · 5 · (d�1n e + 4 d�2n e) · � then restart
5: aq = (2g + 1)/f mod q (restart if f is not invertible)
6: return (pk = a1, sk = S) where a1 = 2aq mod 2q
7: end function

1: function V�����(µ, pk = a1, (z1, z†2, c))
2: if k (z1, 2d · z†2) k2 > B2 then reject
3: if k (z1, 2d · z†2) k1 > B1 then reject
4: accept i� c = H (b� · a1 · z1 + � · q · ced + z†2 mod p, µ)
5: end function

Figure 15: Description of the BLISS key generation and ver-
i�cation algorithms. We refer to the original paper for the
de�nition of notation like � , N� and b·ed , as they are not rel-
evant for our purposes.

19

include <library .h>
include <utils / debug .h>
include <plugins / plugin_feature .h>
include <plugins / bliss / bliss_private_key .h>
include <plugins / bliss / bliss_public_key .h>
include <unistd .h>

int main(int argc , char ** argv)
{

signature_scheme_t signature_scheme ;
private_key_t * privkey ;
public_key_t * pubkey ;
chunk_t msg , signature ;
char msg_str [] = �This is a test.�;
char *plugins , * plugindir ;

library_init (��, � basic_sign �);
dbg_default_set_level (LEVEL_DIAG);

plugins = lib ->settings -> get_str (lib ->settings , � tests .load�, PLUGINS);
plugindir = lib ->settings -> get_str (lib ->settings , � tests . plugindir �, PLUGINDIR);
plugin_loader_add_plugindirs (plugindir , plugins);
lib ->plugins ->load(lib ->plugins , plugins);

lib ->settings -> set_bool (lib ->settings , �%s. plugins . bliss . use_bliss_b �, 0, lib ->ns);

signature_scheme = SIGN_BLISS_WITH_SHA2_256 ;
msg = chunk_from_str (msg_str);

printf (� Generate private key .\n�);
privkey = lib ->creds -> create (lib ->creds , CRED_PRIVATE_KEY , KEY_BLISS , BUILD_KEY_SIZE , BLISS_I , BUILD_END);

printf (� Extract public key from private key .\n�);
pubkey = privkey -> get_public_key (privkey);

sleep (10);

printf (�Sign the message : \�%s\�.\n�, msg_str);
privkey ->sign(privkey , signature_scheme , msg , & signature);

printf (� Verify the signature : �);
if(pubkey -> verify (pubkey , signature_scheme , msg , signature))

printf (�ok .\n�);
else

printf (� error !\n�);
free(signature .ptr);

privkey -> destroy (privkey);
pubkey -> destroy (pubkey);

library_deinit ();
return 0;

}

Figure 16: The basic C program “basic_sign” linked against libstrongswan on which we perform branch tracing.

20

#!/ usr/bin/perl

use strict ;
use File :: stat;

my $fh;
my $mapfile = � basic_sign .map�;
my $data = �perf.data�;
my $script = �perf - script .out�;

open $fh , $mapfile or die � Cannot open map file�;
my $line = <$fh >;
$line =~ /^([0 -9a-f]+) -/ or die �Map file format incorrect �;
close $fh;

my $baseaddr = hex($1);

addresses of the main branching instructions in bernoulli_exp function
my $addr_entry = sprintf �%x�, $baseaddr + 0 x66f0 ;
my $addr_loopx = sprintf �%x�, $baseaddr + 0 x67c6 ;
my $addr_testx = sprintf �%x�, $baseaddr + 0 x674d ;
my $addr_retrn = sprintf �%x�, $baseaddr + 0 x67ad ;

my $addr_sign1 = sprintf �%x�, $baseaddr + 0 x2de3 ;
my $addr_sign2 = sprintf �%x�, $baseaddr + 0 x2f51 ;

if (-e $script and -e $data and stat($data)->mtime > stat($script)->mtime) {
unlink $script ;

}

open $fh , $script or open $fh , �perf script -F ip ,addr 2>/ dev/null | tee $script |�;

my $bit;
my $x;

while (<$fh >) {
if(/ $addr_entry /) {

print � Enter bernoulli_exp �;
if(/ $addr_sign1 / or / $addr_sign2 /) {

print � from the sign_bliss function �;
}
print �. x = �;
$bit = 1;
$x = 0;

}
elsif (/ $addr_loopx /) {

$x = 2* $x + $bit;
$bit = 1;

}
elsif (/ $addr_testx /) {

$bit = 0;
}
elsif (/ $addr_retrn /) {

$x = 2* $x + $bit;
print �$x. Exit bernoulli_exp .\n�;

}
}

close $fh;

Figure 17: The perl script “parse-perfdata.pl” that parses the output of the perf command.

21

#!/ bin/bash

TARGET = basic_sign
TARGETOBJ =. libs/lt - $TARGET
TARGETOUT = $TARGET .out
PARSEFILE =parse - perfdata .out

$TARGETOBJ &> $TARGETOUT &
TARGETPID =$!

until grep �r-xp .* bliss .so � /proc/ $TARGETPID /maps > $TARGET .map; do
sleep 0.01;

done

echo � Running target �$TARGET � as PID $TARGETPID . Launching perf record .�
perf record -e branches :u -c 1 -d -p $TARGETPID 2>/ dev/null

echo �perf record complete . Parsing perf.data.�
perl parse - perfdata .pl > $PARSEFILE

recovered_x =$(grep -F sign $PARSEFILE | tail -n 1 | grep -Eo �[1-9][0-9]+ �)
correct_sc =$(grep -F norm $TARGETOUT | tail -n 1 | grep -Eo �[1-9][0-9]+ �)
correct_m =46539

echo � Recovered x : $recovered_x �
echo � Correct |Sc |^2 : $correct_sc �
echo � Should sum to : $correct_m �

if [$((recovered_x + correct_sc)) -eq $correct_m]; then
echo Success !;

else
echo Failure .;

fi

Figure 18: The shell script “run_exploit_rejection” that launches the entire attack.

TARGET = basic_sign
EXPLOIT = run_exploit_rejection
STRONGSWANROOT = $(HOME)/ strongswan -5.5.2
CONFIGH = $(STRONGSWANROOT)/ config .h
LIBSTRONGSWANDIR = $(STRONGSWANROOT)/src/ libstrongswan
LIBSTRONGSWAN = $(LIBSTRONGSWANDIR)/ libstrongswan .la
PLUGINDIR = $(LIBSTRONGSWANDIR)/ plugins
PLUGINS = sha2 sha1 mgf1 random gmp bliss

CFLAGS = -I$(LIBSTRONGSWANDIR) -I$(LIBSTRONGSWANDIR)/math/ libnttfft
CFLAGS += -include $(CONFIGH) -g -O3
CFLAGS += -DPLUGINDIR =�\�$(PLUGINDIR)\�� -DPLUGINS =�\�$(PLUGINS)\��
CFLAGS += -Wall

. PHONY : all run clean
all: $(TARGET)
run: $(TARGET)

./$(TARGET) 2>/ dev/null

./$(EXPLOIT)
clean :

rm -f $(TARGET) $(TARGET).o $(TARGET).map $(TARGET).out *~
rm -rf .libs/
rm -f parse - perfdata .out perf.data perf.data.old perf - script .out

$(TARGET): $(TARGET).o
libtool --mode=link gcc -g -o $@ $^ $(LIBSTRONGSWAN)

Figure 19: Make�le for the attack. The attack can be run with “make run”.

22

#!/ usr/bin/perl

use strict ;
use File :: stat;

my $fh;
my $mapfile = � basic_sign .map�;
my $data = �perf.data�;
my $script = �perf - script .out�;

open $fh , $mapfile or die � Cannot open map file�;
my $line = <$fh >;
$line =~ /^([0 -9a-f]+) -/ or die �Map file format incorrect �;
close $fh;

my $baseaddr = hex($1);

my % offsets = (
gaussian_to_pos_binary => 0x697e , gaussian_to_bernoulli_exp => 0x69f5 ,
gaussian_return_true => 0x6a3e , gaussian_no_neg => 0x6a56 ,
gaussian_return => 0x69d8 ,
pos_binary_for_loop => 0x690e , pos_binary_return_true => 0x6934 ,
pos_binary_return => 0x692c , pos_binary_restart => 0x6906 ,
bernoulli_exp_for_loop => 0x67c6 , bernoulli_exp_test_bit => 0x674d ,
bernoulli_exp_return_full => 0x67d5 , bernoulli_exp_return => 0x67ad ,

);

open $fh , $script or die � Cannot open $script �;

sub nextline {
my $s = <$fh >;
$s =~ /^ *([0 -9a-f]+) => *([0 -9a-f]+)$/ or die � Parse error �;
my ($source , $dest) = (hex($1) - $baseaddr , hex($2) - $baseaddr);
return ($source , $dest);

}

sub parse_gaussian {
my ($x , $zsq , $z);
my ($ret , $neg) = (0 ,1);
print � Entering parse_gaussian .\n�;
while (1) {

my ($source , $dest) = nextline ();

if($source == $offsets {� gaussian_to_pos_binary �}) {
print � Jump to parse_pos_binary .\n�;
$x = parse_pos_binary ();
print � Returned : x=� $x �.\n�;

}
elsif ($source == $offsets {� gaussian_to_bernoulli_exp �}) {

print � Jump to parse_bernoulli_exp .\n�;
$zsq = parse_bernoulli_exp ();
print � Returned : z^2-k^2x^2= � $zsq �.\n�;
$zsq = $zsq + 254*254* $x*$x;
$z = sqrt($zsq);
print � Deduced : z=� $z �.\n�;

}
elsif ($source == $offsets {� gaussian_return_true �}) {

$ret = 1;
}
elsif ($source == $offsets {� gaussian_no_neg �}) {

$neg = 0;
}
elsif ($source == $offsets {� gaussian_return �}) {

my $res = undef ;
if($ret) {

$res = $neg ? -$z : $z;
}
print � Exiting parse_gaussian with result : $res\n�;
return $res;

}
}

}

Figure 20: The perl script “parse-perfdata-gauss.pl” that parses the output of the perf command in the Gaussian sampling
attack (continues to next page).

23

sub parse_pos_binary {
my $i = 0;
while (1) {

my ($source , $dest) = nextline ();
if($source == $offsets {� pos_binary_for_loop �}) {

$i = $i + 1;
}
elsif ($source == $offsets {� pos_binary_return_true �}) {

return $i;
}
elsif ($source == $offsets {� pos_binary_return �}) {

return undef ;
}
elsif ($source == $offsets {� pos_binary_restart �}) {

$i = 0;
}

}
}

sub parse_bernoulli_exp {
my ($bit , $x) = (1 ,0);
while (1) {

my ($source , $dest) = nextline ();
if($source == $offsets {� bernoulli_exp_for_loop �}) {

$x = 2* $x + $bit;
$bit = 1;

}
elsif ($source == $offsets {� bernoulli_exp_test_bit �}) {

$bit = 0;
}
elsif ($source == $offsets {� bernoulli_exp_return_full �}) {

return 2* $x + $bit;
}
elsif ($source == $offsets {� bernoulli_exp_return �}) {

return undef ;
}

}
}

for(my $i =0; $i <1024; $i ++) {
parse_gaussian ();

}

close $fh;

Figure 21: The perl script “parse-perfdata-gauss.pl” that parses the output of the perf command in the Gaussian sampling
attack (continued).

24

	Abstract
	1 Introduction
	2 Description of the BLISS scheme
	3 Attacks on the Rejection Sampling
	3.1 Exploiting the scalar product leakage
	3.2 Exploiting the norm leakage
	3.3 SEMA experiments against microcontroller
	3.4 Branch tracing attack against strongSwan

	4 Attack on the Gaussian Sampling
	5 Attacks on the Multiplication
	5.1 Implementation details
	5.2 Attacking the unprotected multiplication
	5.3 Attacking a blinded multiplication

	6 Discussion
	6.1 Attack against the rejection sampling
	6.2 Attack on the Gaussian sampling
	6.3 Attack on the multiplication by c

	References
	A Howgrave-Graham–Szydlo Algorithm in Power-of-Two Cyclotomic Fields
	A.1 Background on Algebraic Number Theory
	A.2 Description of Howgrave-Graham & Szydlo algorithm
	A.3 The case p=2
	A.4 Composite case
	A.5 Estimation of the algebraic norm of secrets

	B Further details on BLISS
	C Code of the strongSwan attacks

